4.7 Article

Ablative Hypofractionated Radiation Therapy Enhances Non-Small Cell Lung Cancer Cell Killing via Preferential Stimulation of Necroptosis In Vitro and In Vivo

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ijrobp.2018.01.036

关键词

-

资金

  1. National Natural Science Foundation of China [81472797, 81201754, 81301624, 81502660]
  2. Tianjin Municipal Science and Technology Commission [15JCYBJC25500]
  3. Foundation of National Clinical Research Center of Cancer [N14B04]
  4. CyberKnife Foundation of Tianjin Medical University Cancer Institute & Hospital and National Clinical Research Center for Cancer [4-1-3]

向作者/读者索取更多资源

Purpose: To investigate how necroptosis (ie, programmed necrosis) is involved in killing of non-small cell lung cancer (NSCLC) after ablative hypofractionated radiation therapy (HFRT). Methods and Materials: Deoxyribonucleic acid damage, DNA repair, and the death form of NSCLC cells were assessed after radiation therapy. The overexpression and silencing of receptor-interacting protein kinases 3 (RIP3, a key protein involved activation of necroptosis)-stable NSCLC cell lines were successfully constructed. The form of cell death, the number and area of colonies, and the regulatory proteins of necroptosis were characterized after radiation therapy in vitro. Finally, NSCLC xenografts and patient specimens were used to examine involvement of necroptosis after ablative HFRT in vivo. Results: Radiation therapy induced expected DNA damage and repair of NSCLC cell lines, but ablative HFRT at >= 10 Gy per fraction preferentially stimulated necroptosis in NSCLC cells and xenografts with high RIP3 expression, as characterized by induction and activation of RIP3 and mixed-lineage kinase domain-like protein and release of immune-activating chemokine high-mobility group box 1. In contrast, RNA interference of RIP3 attenuated ablative HFRT-induced necroptosis and activation of its regulatory proteins. Among central early-stage NSCLC patients receiving stereotactic body radiation therapy, high expression of RIP3 was associated with improved local control and progression-free survival (all P < .05). Conclusions: Ablative HFRT at >= 10 Gy per fraction enhances killing of NSCLC with high RIP3 expression via preferential stimulation of necroptosis. RIP3 may serve as a useful biomarker to predict favorable response to stereotactic body radiation therapy. (C) 2018 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据