4.7 Article

Identification of Bacteriophage Virion Proteins Using Multinomial Naive Bayes with g-Gap Feature Tree

期刊

出版社

MDPI
DOI: 10.3390/ijms19061779

关键词

bacteriophage virion proteins; g-gap peptides; ANOVA; Multinomial Naive Bayes

资金

  1. National Natural Science Foundation of China [265 31771471, 21673034, 71661167005]

向作者/读者索取更多资源

Bacteriophages, which are tremendously important to the ecology and evolution of bacteria, play a key role in the development of genetic engineering. Bacteriophage virion proteins are essential materials of the infectious viral particles and in charge of several of biological functions. The correct identification of bacteriophage virion proteins is of great importance for understanding both life at the molecular level and genetic evolution. However, few computational methods are available for identifying bacteriophage virion proteins. In this paper, we proposed a new method to predict bacteriophage virion proteins using a Multinomial Naive Bayes classification model based on discrete feature generated from the g-gap feature tree. The accuracy of the proposed model reaches 98.37% with MCC of 96.27% in 10-fold cross-validation. This result suggests that the proposed method can be a useful approach in identifying bacteriophage virion proteins from sequence information. For the convenience of experimental scientists, a web server (PhagePred) that implements the proposed predictor is available, which can be freely accessed on the Internet.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据