4.7 Article

Preparation of carbon nanotube and graphene doped polyphenylene sulfide flexible film electrodes and the electrodeposition of Cu2O nanocrystals for hydrogen-generation

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 43, 期 15, 页码 7356-7365

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2018.02.167

关键词

RGOL@PPS/CNT plus RGO flexible film; Electrodeposition; Cuboctahedral Cu2O nanocrystals; Hydrogen evolution reaction

资金

  1. National Natural Science Foundation of China [51372106]

向作者/读者索取更多资源

Through annealing and electrochemical reduction methods, we successfully fabricates reduced graphene oxide layer (RGOL) modified carbon nanotube and reduced graphene oxide (CNT + RGO) doped polyphenylene sulfide (PPS) flexible thin film electrodes. These composite structure films can not only overcome the brittle nature of PPS, but also make good use of the thermal stability of PPS. Furthermore, carbon nanotube and reduced graphene oxide enhance the electrical conductivity of the composite films. Truncated octahedral and cuboctahedral Cu2O nanocrystals are synthesized on RGOL modified CNT + RGO doped PPS (RGOL@PPS/CNT + RGO) composite film by a facile electrodeposition method without using any surfactants or external heating. RGOL on the PPS/CNT + RGO substrate facilitates the formation of Cu2O morphology. The obtained Cu2O composite film shows a superior ability for the hydrogen evolution reaction (HER) compared with other Cu2O electrocatalysts. The Cu2O with a smaller loading less than 0.04 mg cm(-2) on the composite film exhibits excellent HER activities with a low onset potential of 0.05 V and large current densities. The results of the HER performance indicates that the RGOL@PPS/CNT + RGO composite film has a potential application in flexible hydrogen-producing devices. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据