4.6 Article

Cyclic stretch and compression forces alter microRNA-29 expression of human periodontal ligament cells

期刊

GENE
卷 566, 期 1, 页码 13-17

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.gene.2015.03.055

关键词

MicroRNA; Periodontal ligament; Extracellular matrix; Cyclic stretch; Compression

资金

  1. College of Dentistry, University of Illinois at Chicago

向作者/读者索取更多资源

MicroRNAs (miRs) play an important role in the development and remodeling of tissues through the regulation of large cohorts of extracellular matrix (ECM) genes. The purpose of the present study was to determine the response of miR-29 family expression to loading forces and their effects on ECM gene expression in periodontal ligament cells, the key effector cell population during orthodontic tooth movement. In a comparison between miRs from human periodontal ligament cells (PDLCs) and alveolar bone cells (ABCs) from healthy human subjects, the ABC cohort of miRs was substantially greater than the corresponding PDLC cohort. Cyclic mechanical stretch forces at 12% deformation at 0.1 Hz for 24 h decreased expression of miR-29 family member miRs about 0.5 fold while 2 g/cm(2) compression force for 24 h increased miR-29 family member expression in PDLCs 1.8-4 folds. Cyclic stretch up-regulated major ECM genes in PDLCs, such as COL1A1,COL3A1 and COL5A1, while the compression force resulted in a down-regulation of these ECM genes. Direct interactions of miR-29 and Col1a1, Col3a1 and Col5a1 were confirmed using a dual luciferase reporter gene assay. In addition, transient transfection of a miR-29b mimic in mouse PDLCs down-regulated Col1a1, Col3a1 and Col5a1 while the transfection of miR-29b inhibitor up-regulated these genes compared to control transfection indicating that these target ECM genes directly responded to the altered level of miR-29b. These results provided a possible explanation for the effects of the miR-29 family on loaded PDLCS and their roles in extracellular matrix gene expression. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据