4.7 Review

State-of-the-art protein engineering approaches using biological macromolecules: A review from immobilization to implementation view point

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijbiomac.2017.10.182

关键词

Protein engineering; Enzyme; Biocatalysis; Chemically modified enzyme; Catalytic activity; Rational design; Directed evolution

向作者/读者索取更多资源

Over the past years, technological and scientific advances have proven biocatalysis as a sustainable alternative than traditional chemical catalysis including organo- or metallocatalysis. In this context, immobilization based approaches represent simple but effective routes for engineering enzyme catalysts with higher activities than wild-type derivatives. Many enzymes including oxidoreductases have been engineered by rational and directed evolution, to realize the catalytic activity, enantioselectivity, and stability attributes which are essential for their biotechnological exploitation. Induce yet stable activity in enzyme catalysis offer new insights and motivation to engineer efficient catalysts for practical and commercial purposes. It has now become possible to envisage substrate accessibility to the catalytic site of the enzyme by current computational capabilities that reduce the experimental work related to the enzyme selection, screening, and engineering. Herein, state-of-the-art protein engineering approaches for improving enzymatic activities including chemical modification, directed evolution, and rational design or their combination methods are discussed. The emphasis is also given to the applications of the resulting tailored catalysts ranging from fine chemicals to novel pharmaceutical compounds that use biocatalysts as a vital step. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Review Food Science & Technology

Insight of nanotechnological processing for nano-fortified functional foods and nutraceutical-opportunities, challenges, and future scope in food for better health

Katya M. Aguilar-Perez, Gustavo Ruiz-Pulido, Dora Medina, Roberto Parra-Saldivar, Hafiz M. N. Iqbal

Summary: This article introduces the prospects and applications of nanotechnology in the food industry, including improving food quality, nutritional value, and food safety, as well as the application of nanomaterials in nutraceutical delivery, obesity treatment, and improving the palatability of healthy foods.

CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION (2023)

Article Chemistry, Physical

Hydrogen-based sono-hybrid catalytic degradation and mitigation of industrially-originated dye-based pollutants

Komal Rizwan, Muhammad Bilal, Yassine Slimani, Pau Loke Show, Sami Rtimi, Arpita Roy, Hafiz M. N. Iqbal

Summary: Increasing global concern over hazardous pollutants in water bodies due to their toxicity and threat to the environment has led to the need for new or upgraded remediation methods. Advanced oxidation processes (AOPs) utilizing highly reactive oxidizing radicals like center dot O and center dot OH have shown efficacy in the mineralization of dye pollutants. Sonolysis, a newer AOP that employs ultrasound irradiation for generating oxidizing radicals, has become a robust hybrid AOP for degrading environmental contaminants. This review focuses on the degradation of dyes through ultrasound-based AOPs and discusses different sono-based methods and their efficacy for wastewater treatment.

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY (2023)

Review Chemistry, Physical

Broadening the Scope of Biocatalysis Engineering by Tailoring Enzyme Microenvironment: A Review

Wenqian Li, Muhammad Bilal, Anil Kumar Singh, Farooq Sher, S. Salman Ashraf, Marcelo Franco, Juliana Heloisa Pine Americo-Pinheiro, Hafiz M. N. Iqbal

Summary: This article reviews protein engineering approaches that focus on regulating the catalytic microenvironment of enzymes. By adjusting pH, creating water-like microenvironments, and activating enzyme catalysis in organic solvents and gas phase, the effectiveness of catalysts can be optimized, making them important for industrial bioprocesses.

CATALYSIS LETTERS (2023)

Article Environmental Sciences

Application of Chemometric Methods for the Optimization Secretion of Xylanase by Aspergillus oryzae in Solid State Fermentation and Its Application in the Saccharification of Agro-industrial Waste

Marise Silva de Carvalho, Luiz Henrique Sales de Menezes, Adriana Bispo Pimentel, Floriatan Santos Costa, Polyane Cabral Oliveira, Marta Maria Oliveira dos Santos, Iasnaia Maria de Carvalho Tavares, Muhammad Irfan, Muhammad Bilal, Joao Carlos Teixeira Dias, Julieta Rangel de Oliveira, Marcelo Franco

Summary: In this study, a comprehensive investigation was conducted on the production of xylanase by solid-state fermentation using Aspergillus oryzae ATCC 10124. Enzyme production was optimized through statistical designs for both the mixture of waste residues and fermentation parameters. The optimized process resulted in a significant increase (up to 165%) in enzymatic activity. The xylanase produced in this fermentation process exhibited alkaline characteristics and high thermal stability. Moreover, the multienzyme extract obtained directly from the fermentation process showed efficient saccharification capabilities without the need for enzyme purification.

WASTE AND BIOMASS VALORIZATION (2023)

Article Biotechnology & Applied Microbiology

Citrus limon peroxidase-assisted biocatalytic approach for biodegradation of reactive 1847 colfax blue P3R and 621 colfax blue R dyes

Arjumand Riaz, Umme Kalsoom, Haq Nawaz Bhatti, Teofil Jesionowski, Muhammad Bilal

Summary: Dye-contaminated toxic waste is a significant environmental problem, but peroxidase from lemon peels has been found to efficiently degrade dyes. In this study, the enzyme successfully degraded two dyes with environmental and cost advantages.

BIOPROCESS AND BIOSYSTEMS ENGINEERING (2023)

Review Biotechnology & Applied Microbiology

Sustainable production of biofuels from the algae-derived biomass

Tehreem Mahmood, Nazim Hussain, Areej Shahbaz, Sikandar Mulla, Hafiz M. N. Iqbal, Muhammad Bilal

Summary: The worldwide depletion of fossil fuel reserves and the associated environmental and health risks are discussed in this study. The need for alternative renewable energy sources, with a focus on algae-based biofuels, is emphasized. Different cultivation systems for algae and various factors affecting biomass yield and biofuel production are outlined. The economic benefits of algae-based biofuels are highlighted.

BIOPROCESS AND BIOSYSTEMS ENGINEERING (2023)

Article Biotechnology & Applied Microbiology

Biocatalytic potential of Brassica oleracea L. var. botrytis leaves peroxidase for efficient degradation of textile dyes in aqueous medium

Umme Kalsoom, Haq Nawaz Bhatti, Kiran Aftab, Faiza Amin, Teofil Jesionowski, Muhammad Bilal

Summary: This study investigated the potential of Brassica oleracea peroxidase in degrading reactive textile dyes Remazol Turquoise Blue 133 G and Drim Red CL4BN. The results showed that optimal conditions for enzymatic decolorization of these dyes were achieved with specific pH, temperature, enzyme activity, hydrogen peroxide concentration, and dye concentration. The findings suggest that Brassica oleracea peroxidase has the potential to efficiently remediate dye pollutants and dye-based industrial effluents in a green technology theme.

BIOPROCESS AND BIOSYSTEMS ENGINEERING (2023)

Review Chemistry, Medicinal

Microalgae-Based Biotechnology as Alternative Biofertilizers for Soil Enhancement and Carbon Footprint Reduction: Advantages and Implications

Jose Guadalupe Osorio-Reyes, Hiram Martin Valenzuela-Amaro, Jose Juan Pablo Pizana-Aranda, Diana Ramirez-Gamboa, Edgar Ricardo Melendez-Sanchez, Miguel E. Lopez-Arellanes, Ma. Dolores Castaneda-Antonio, Karina G. Coronado-Apodaca, Rafael Gomes Araujo, Juan Eduardo Sosa-Hernandez, Elda M. Melchor-Martinez, Hafiz M. N. Iqbal, Roberto Parra-Saldivar, Manuel Martinez-Ruiz

Summary: Due to population growth and anthropological activity, there is a need for sustainable and affordable technologies to meet the current and future demand for agricultural products. The use of chemical fertilizers has caused nutrient shortages and environmental and health problems globally. Green biotechnology based on microalgae biomass offers a sustainable alternative for soil improvement and phytoremediation.

MARINE DRUGS (2023)

Review Chemistry, Analytical

Degradation of viral RNA in wastewater complex matrix models and other standards for wastewater-based epidemiology: A review

Lizeth Parra-Arroyo, Manuel Martinez-Ruiz, Sofia Lucero, Mariel A. Oyervides-Munoz, Mollie Wilkinson, Elda M. Melchor-Martinez, Rafael G. Araujo, Karina G. Coronado-Apodaca, Hugo Velasco Bedran, German Buitron, Adalberto Noyola, Damia Barcelo, Hafiz M. N. Iqbal, Juan Eduardo Sosa-Hernandez, Roberto Parra-Saldivar

Summary: Wastewater-Based Epidemiology (WBE) is a powerful tool for pandemic surveillance, but the reliability of wastewater results is affected by numerous variables. More comprehensive models are needed to study viral RNA degradation in complex matrices, and wastewater indicators identified through analytical chemistry can be used as health indicators and to determine the initial viral RNA content.

TRAC-TRENDS IN ANALYTICAL CHEMISTRY (2023)

Review Biochemistry & Molecular Biology

Magnetic metal-organic frameworks immobilized enzyme-based nano-biocatalytic systems for sustainable biotechnology

Muhammad Bilal, Ehsan Ullah Rashid, Junaid Munawar, Hafiz M. N. Iqbal, Jiandong Cui, Jakub Zdarta, Syed Salman Ashraf, Teofil Jesionowski

Summary: Nanobiocatalysts are an emerging field of nanobiocatalysis that integrates enzyme molecules into multifunctional materials like metal-organic frameworks (MOFs). Among these materials, functionalized magnetic MOFs have gained significant interest as versatile nano-biocatalytic systems for various organic transformations. These systems offer controllable enzyme microenvironments and show promise in enzyme engineering and biocatalytic transformations.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2023)

Review Biochemistry & Molecular Biology

Manganese peroxidases as robust biocatalytic tool-An overview of sources, immobilization, and biotechnological applications

Muhammad Bilal, Jakub Zdarta, Teofil Jesionowski, Hafiz M. N. Iqbal

Summary: Manganese peroxidases (MnPs) are enzymes with robust catalytic features that have gained attention in biotechnological applications, particularly in environmental remediation. They can degrade various organic pollutants and immobilized MnP fractions perform well in hostile environments. The article covers the microbial sources, structural attributes, immobilization strategies, and various biotechnological applications of MnP.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2023)

Article Chemistry, Physical

Bioreactors and biophoton-driven biohydrogen production strategies

Sadia Anjum, Shakira Aslam, Nazim Hussain, Muhammad Bilal, Grzegorz Boczkaj, Wojciech Smulek, Teofil Jesionowski, Hafiz M. N. Iqbal

Summary: Given the current issues with global warming and rising greenhouse gas emissions, bio-hydrogen is a viable alternative fuel option. This study examines the different technologies and processes involved in bio-hydrogen production, as well as the limitations and challenges. Organic waste, particularly biodegradable waste, is the preferred feedstock for bio-hydrogen generation. The review also explores alternative options for improving process efficiency and discusses the hindrances to fuel-cell commercialization.

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY (2023)

Editorial Material Microbiology

Editorial: Synergistic interaction of plants and microbes for removal of toxic elements/chemicals: multidisciplinary approaches for a sustainable environment

Pooja Sharma, Surendra Pratap Singh, Hafiz M. N. Iqbal, Yen Wah Tong

FRONTIERS IN MICROBIOLOGY (2023)

Article Engineering, Environmental

Inorganic oxide systems as platforms for synergistic adsorption and enzymatic conversion of estrogens from aqueous solutions: Mechanism, stability and toxicity studies

Jakub Zdarta, Filip Ciesielczyk, Muhammad Bilal, Katarzyna Jankowska, Karolina Bachosz, Oliwia Degorska, Agnieszka Rybarczyk, Teofil Jesionowski, Anne S. Meyer

Summary: Synthetic hormones are dangerous pollutants that pose risks to the reproductive health of both ecosystems and humans through water, including drinking water. Traditional wastewater treatment methods are not efficient enough. In this study, a new biosystem made of CaSiO3 and laccase was designed and fabricated, and its application for the removal of the synthetic estrogen 17 alpha-ethynylestradiol (EE2) from aqueous systems was demonstrated. The biosystem achieved 100% removal efficiency and showed synergistic degradation through simultaneous adsorption and biocatalytic conversion, with enzymatic conversion dominating.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2023)

Article Engineering, Chemical

A dual enzyme-phosphate hybrid nanoflower for glutamate detection

Peikun Li, Jiahui Jia, Zixin Geng, Saizhao Pang, Ruirui Wang, Muhammad Bilal, Hongjie Bian, Jiandong Cui, Shiru Jia

Summary: The glutamate oxidase (GLOX) and horseradish peroxidase (HRP) hybrid nanoflowers (GLOX&HRP-HNFs) were successfully prepared for the detection of glutamic acid (Glu). The GLOX&HRP-HNFs exhibited higher storage stability and resistance to organic solvents than free GLOX and HRP. Additionally, it showed a good linear range and a low limit of detection for glutamate.

PARTICUOLOGY (2023)

Article Biochemistry & Molecular Biology

Effects of aging and diabetes on the deformation mechanisms and molecular structural characteristics of collagen fibrils under daily activity

Wei-Han Hui, Yen-Lin Chen, Shu-Wei Chang

Summary: Crosslinking affects the mechanical behavior and tissue metabolism of collagen-based tissues. Aging and diabetes alter the crosslinking type and density, thus changing tissue properties. High-connectivity enzymatic crosslinking and advanced-glycation end-products result in uniform deformation under daily activity, while low-connectivity enzymatic crosslinking does not. High-connectivity model displays more sliding, while AGEs induce instability in structures near the binding sites.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2024)

Article Biochemistry & Molecular Biology

Tea polyphenols protect against Flavobacterium columnare-induced gill injury via suppression of oxidative stress, inflammation, and apoptosis in grass carp

Yao-Bin Ma, Xiao-Qiu Zhou, Wei-Dan Jiang, Pei Wu, Yang Liu, Shu-Wei Li, Ling Tang, Lu Zhang, Hai-Feng Mi, Lin Feng

Summary: Tea polyphenols (TPs) are an inexpensive feed additive that can protect the gill function of fish against Flavobacterium columnare (F. columnare) through various mechanisms, including suppression of oxidative stress, apoptosis, and inflammation.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2024)

Article Biochemistry & Molecular Biology

Neddylation-dependent LSD1 destabilization inhibits the stemness and chemoresistance of gastric cancer

Yan-Jia Guo, Jing-Ru Pang, Yu Zhang, Zhong-Rui Li, Xiao-Lin Zi, Hong-Min Liu, Ning Wang, Li-Juan Zhao, Ya Gao, Bo Wang, Piet Herdewijn, Cheng-Yun Jin, Ying Liu, Yi-Chao Zheng

Summary: This study identifies the conjugation of NEDD8 to LSD1 and its impact on GC cells, revealing the significance of LSD1 neddylation in GC.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2024)

Review Biochemistry & Molecular Biology

Cellular and physiological roles of sigma factors in Vibrio spp.: A comprehensive review

Geum-Jae Jeong, Fazlurrahman Khan, Nazia Tabassum, Young-Mog Kim

Summary: Vibrio species are motile gram-negative bacteria commonly found in aquatic environments. They can adapt to environmental fluctuations and develop protective mechanisms against host immune systems. Different types of sigma and anti-sigma factors play important roles in regulating gene expression and virulence in Vibrio species.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2024)

Article Biochemistry & Molecular Biology

An eco-friendly composite hydrogel based on covalently crosslinked cellulose/poly (glycerol citrate) for thallium (І) removal from aqueous solutions

Zahra Mohammadbagheri, Behrooz Movahedi, Shaghayegh Saeedi, Abbas Rahmati

Summary: In this study, a reusable biobased composite hydrogel was successfully synthesized and used for the removal of Tl(I) from aqueous solutions. The hydrogel exhibited high adsorption capacity and thermal stability, and the adsorption process was found to be thermodynamically spontaneous. The results demonstrated that the hydrogel can be reused multiple times without significant loss of its adsorption capacity.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2024)

Article Biochemistry & Molecular Biology

Enzyme-triggered approach to reduce water bodies' contamination using peroxidase-immobilized ZnO/SnO2/alginate nanocomposite

Iqra Batool, Muhammad Imran, Ayesha Anwar, Farhan Ahmed Khan, Afrah E. Mohammed, Ashwag Shami, Hafiz Iqbal

Summary: Enzyme immobilization on ZnO/SnO2 and ZnO/SnO2/SA nanocomposites was studied, and the catalytic and biochemical characteristics of the immobilized enzyme were investigated. The results showed that ZnO/SnO2 and ZnO/SnO2/SA nanostructures are suitable carriers for enzyme immobilization.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2024)

Article Biochemistry & Molecular Biology

Bacterial cellulose microfiber reinforced hollow chitosan beads decorated with cross-linked melamine plates for the removal of the Congo red

Elias Mosaffa, Dhruvi Patel, Nasim Amiri Ramsheh, Rishikumar Indravadan Patel, Atanu Banerjee, Hossein Ghafuri

Summary: In this study, a unique 3D bead structure of adsorbent, composed of bacterial cellulose microfilaments reinforced chitosan adorned with melamine 2D plates, was synthesized for anionic dye removal. The adsorbent showed high specific surface area and abundant functional groups, resulting in exceptional adsorption capacity. The characteristics and optimal conditions of the adsorbent were assessed and analyzed.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2024)

Article Biochemistry & Molecular Biology

Necrotic activity of ExhC from Mammaliicoccus sciuri is mediated by specific amino acid residues

Carolina Gismene, Jorge Enrique Hernandez Gonzalez, Marilia de Freitas Calmon, Andrey Fabricio Ziem Nascimento, Angela Rocio Nino Santisteban, Felipe Antunes Calil, Alana Della Torre da Silva, Paula Rahal, Rejane Maira Goes, Raghuvir Krishnaswamy Arni, Ricardo Barros Mariutti

Summary: Mammaliicoccus sciuri, a bacterium of clinical and veterinary relevance, expresses the virulence factor Exfoliative Toxin C (ExhC), which binds specifically to desmoglein-1 (Dsg1) and plays a role in tissue integrity. This study investigates the necrotic activity of ExhC and identifies a variant lacking necrotic potential but retaining enzymatic activity through mutagenesis experiments and crystal structure determination.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2024)

Article Biochemistry & Molecular Biology

Silk-hydrogel functionalized with human decellularized Wharton's jelly extracellular matrix as a minimally invasive injectable hydrogel system for potential nucleus pulposus tissue replacement therapy

Bibhas K. Bhunia, Ashutosh Bandyopadhyay, Souradeep Dey, Biman B. Mandal

Summary: Intervertebral disc degeneration is a major cause of chronic low back pain and disability. Researchers have developed a bioactive silk-based hybrid hydrogel system functionalized with decellularized human Wharton's jelly extracellular matrix as bioactive cues. The hydrogels mimic the rheological and mechanical properties of the native nucleus pulposus tissue and support cell viability, proliferation, and tissue maturation.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2024)

Article Biochemistry & Molecular Biology

A uniform-unsaturated crosslinking strategy to construct injectable alginate hydrogel

Qun Zhang, Yonggan Yan, Zhao Li, Jing Du, Kai Zhang, Liguo Zhang, Ting Wang, Alberto Bianco, Shaohua Ge, Baojin Ma

Summary: A new crosslinking strategy has been devised to construct injectable sodium alginate hydrogels, which can be regulated for injectability and have great potential in biomedical applications.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2024)

Article Biochemistry & Molecular Biology

α-Tocopherol-loaded multi-layer nanoemulsion using chitosan, and dextran sulfate: Cellular uptake, antioxidant activity, and in vitro bioaccessibility

Seong Eun Hong, Ji-Soo Lee, Hyeon Gyu Lee

Summary: The potential of multi-layer nanoemulsions for improving the cellular uptake, antioxidant activity, and in vitro bioaccessibility of alpha-tocopherol was examined. The results showed that the multi-layer nanoemulsions significantly enhanced the cellular uptake and antioxidant activity of alpha-tocopherol compared to free coumarin 6. Furthermore, the use of chitosan and dextran sulfate as wall materials in the multi-layer nanoemulsions led to even higher cellular uptake, in vitro bioaccessibility, and antioxidant activity of alpha-tocopherol.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2024)

Article Biochemistry & Molecular Biology

Stabilization of oil-in-water high internal phase emulsions with octenyl succinic acid starch and beeswax oleogel

Jingjing Yu, Yanhui Zhang, Ruoning Zhang, Yanxiang Gao, Like Mao

Summary: High internal phase emulsions (HIPEs) based on beeswax (BW) oleogels and octenyl succinic acid starch (OSA starch) were prepared by a simple one-step method. The results showed that oleogelation improved the stability and encapsulation capability of the HIPEs, which is significant for the development of novel healthy food.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2024)

Review Biochemistry & Molecular Biology

A review for the correlation between optic atrophy 1-dependent mitochondrial fusion and cardiovascular disorders

Bi-Feng Yao, Xiu-Ju Luo, Jun Peng

Summary: The balanced and continuous fission and fusion of mitochondria, regulated by OPA1, are important for maintaining mitochondrial dynamics in cardiovascular disorders. Understanding the role of OPA1 in mitochondrial fusion can provide insights into the pathogenesis of cardiovascular diseases.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2024)

Review Biochemistry & Molecular Biology

Nanomaterials for detection of biomolecules and delivering therapeutic agents in theragnosis: A review

Gokul Paramasivam, Anandhavelu Sanmugam, Vishnu Vardhan Palem, Murugan Sevanan, Ananda Babu Sairam, Nachiappan Nachiappan, Buhyun Youn, Jung Sub Lee, Muthuchamy Nallal, Kang Hyun Park

Summary: Nanomaterials are being used to deliver therapeutic agents in living systems. Different nanotechnological applications such as immunosensors, immune assays, and drug delivery are being implemented using nanotechnology. Genomics plays a crucial role in selecting appropriate drugs for personalized cancer therapy. It helps in analyzing gene and protein expression, disease classification, and designing disease models. Delivering drugs to specific areas using nanoparticles is a challenging issue.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2024)

Article Biochemistry & Molecular Biology

Preparation and characterization of hemicellulose films reinforced with amino polyhedral oligomeric silsesquioxane for biodegradable packaging

Jing Li, Wei Wang, Han Wu, Feng Peng, Hui Gao, Ying Guan

Summary: In this study, CMH-based CPF films were prepared and their thermal and barrier properties were successfully regulated. The tensile strength and water vapor barrier property of CPF films were significantly improved, making them promising for food packaging applications.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2024)