4.7 Article

Polarimetry-Based Distributed Scatterer Processing Method for PSI Applications

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2018.2798705

关键词

Adaptive filtering; distributed scatterers (DSs); multitemporal interferometric synthetic aperture radar (InSAR); permanent scatterer interferometry (PSI); polarimetric optimization; polarimetric synthetic aperture radar interferometry

向作者/读者索取更多资源

Permanent scatterer interferometry is a multi-temporal interferometric synthetic aperture radar technique that produces high-accuracy ground deformation measurement. A high density of permanent scatterer (PS) is required to provide accurate results. In natural environments with low PS density, distributed scatterers (DSs) could serve as additional coherent observations. This paper introduces a polarimetric scattering property-based adaptive filtering method that preserves PS candidates and filters DS candidates. To further increase the coherence estimate of DS candidates, the technique includes a complex coherence decomposition that adaptively selects the most stable scattering mechanisms, thus improving pixel coherence estimation. The proposed method was evaluated on 11 quad-polarized ALOS PALSAR images and 21 dual-polarized Sentinel-1 images acquired over San Fernando Valley, CA, USA, and Groningen, The Netherlands, respectively. The application of this method increased the number of coherent pixels by almost a factor of eight compared with a single-polarization channel. This paper concludes that a coherence estimate can be significantly improved by applying scattering property-based adaptive filtering and coherence matrix decomposition and accurate displacement measurements can be achieved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据