4.6 Article

An Independent Component Analysis Approach to Motion Noise Cancelation of Cardio-Mechanical Signals

期刊

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
卷 66, 期 3, 页码 784-793

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2018.2856700

关键词

Gyro-cardiography (GCG); independent component analysis (ICA); motion cancellation; seismocardiography (SCG); sternal cardio-mechanical sensing; wearable cardiovascular monitoring

资金

  1. Ignition Grant Initiative from Stevens Institute of Technology

向作者/读者索取更多资源

This paper proposes a new framework for measuring sternal cardio-mechanical signals from moving subjects using multiple sensors. An array of inertial measurement units are attached to the chest wall of subjects to measure the seismocardiogram (SCG) from accelerometers and the gyrocardiogram (GCG) from gyroscopes. A digital signal processing method based on constrained independent component analysis is applied to extract the desired cardio-mechanical signals from the mixture of vibration observations. Electrocardiogram and photoplethysmography modalities are evaluated as reference sources for the constrained independent component analysis algorithm. Experimental studies with 14 young, healthy adult subjects demonstrate the feasibility of extracting seismo- and gyrocardiogram signals from walking and jogging subjects, with speeds of 3.0 mi/h and 4.6 mi/h, respectively. Beat-to-beat and ensemble-averaged features are extracted from the outputs of the algorithm. The beat-to-beat cardiac interval results demonstrate average detection rates of 91.44% during walking and 86.06% during jogging from SCG, and 87.32% during walking and 76.30% during jogging from GCG. The ensemble-averaged pre-ejection period (PEP) calculation results attained overall squared correlation coefficients of 0.9048 from SCG and 0.8350 from GCG with reference PEP from impedance cardiogram. Our results indicate that the proposed framework can improve the motion tolerance of cardio-mechanical signals in moving subjects. The effective number of recordings during day time could be potentially increased by the proposed framework, which will push forward the implementation of cardio-mechanical monitoring devices in mobile healthcare.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据