4.7 Article

A Synchronous Neural Recording Platform for Multiple High-Resolution CMOS Probes and Passive Electrode Arrays

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBCAS.2018.2792046

关键词

BMI; CMOS neural probe; neural recording devices

资金

  1. NIH BRAIN program (USA) [2015/2018-NIH 1U01NS094190]

向作者/读者索取更多资源

Electrophysiological signals in the brain are distributed over broad spatial and temporal scales. Monitoring these signals at multiple scales is fundamental in order to decipher how brain circuits operate and might dysfunction in disease. A possible strategy to enlarge the experimentally accessible spatial and temporal scales consists in combining the use of multiple probes with different resolutions and sensing areas. Here, we propose a neural recording system capable of simultaneous and synchronous acquisitions from a new generation of high-resolution CMOS probes (512 microelectrodes, 25 kHz/electrode whole-array sampling frequency) as well as from a custom-designed CMOS-based headstage. While CMOS probes can provide recordings from a large number of closely spaced electrodes on single-shaft devices, the CMOS-based headstage can be used to interface the wide range of available intra-or epi-cortical passive electrode array devices. The current platform was designed to simultaneously manage high-resolution recordings from up to four differently located CMOS probes and from a single 36-channels low-resolution passive electrode array device. The design, implementation, and performances for both ICs and for the FPGA-based interface are presented. Experiments on retina and neuronal culture preparations demonstrate the recording of neural spiking activity for both CMOS devices and the functionality of the system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据