4.7 Article

FSO-Based Vertical Backhaul/Fronthaul Framework for 5G+Wireless Networks

期刊

IEEE COMMUNICATIONS MAGAZINE
卷 56, 期 1, 页码 218-224

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/MCOM.2017.1600735

关键词

-

资金

  1. Ministry of Higher Education and Scientific Research (MOHESR), Libya
  2. Huawei Technologies Canada
  3. Ontario Ministry of Economic Development and Innovations Ontario Research Fund Research Excellence Program

向作者/读者索取更多资源

The presence of a super high rate, but also cost-efficient, easy-to-deploy, and scalable, back-haul/fronthaul framework, is essential in the upcoming 5G wireless networks and beyond. Motivated by the mounting interest in unmanned flying platforms of various types, including UAVs, drones, balloons, and HAPs/MAPs/LAPs, which we refer to as networked flying platforms (NFPs), for providing communications services, and by the recent advances in free space optics (FSO), this article investigates the feasibility of a novel vertical backhaul/fronthaul framework where the NFPs transport the backhaul/fronthaul traffic between the access and core networks via point-to-point FSO links. The performance of the proposed innovative approach is investigated under different weather conditions and a broad range of system parameters. Simulation results demonstrate that the FSO-based vertical backhaul/fronthaul framework can offer data rates higher than the baseline alternatives, and thus can be considered a promising solution to the emerging backhaul/fronthaul requirements of the 5G+ wireless networks, particularly in the presence of ultra-dense heterogeneous small cells. This article also presents the challenges that accompany such a novel framework and provides some key ideas toward overcoming these challenges.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据