4.8 Article

A one-pot biomimetic synthesis of selectively functionalized lignins from monomers: a green functionalization platform

期刊

GREEN CHEMISTRY
卷 20, 期 11, 页码 2651-2662

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8gc01145a

关键词

-

资金

  1. Knut and Alice Wallenberg Foundation
  2. Wallenberg Wood Science Center

向作者/读者索取更多资源

Lignin is the most abundant renewable source of phenolic compounds with great application potential in renewable materials, biofuels and platform chemicals. The current technology for producing celluloserich fibers co-produces heterogeneous lignin, which includes an untapped source of monomeric phenolics. One such monomer also happens to be the main monomer in soft wood lignin biosynthesis, namely coniferyl alcohol. Herein, we investigate the potential of coniferyl alcohol as a platform monomer for the biomimetic production of tailored functionalized oligolignols with desirable properties for material synthesis. Accordingly, a bifunctional molecule with at least one carboxyl-ended functionality is included with coniferyl alcohol in biomimetic lignin synthesis to, in one pot, produce a functionalized lignin. The functionalization mechanism is a nucleophilic addition reaction to the quinone methide intermediate of lignin polymerization. The solvent system applied was pure water or 50% aqueous acetone. Several bifunctional molecules differing in the second functionality were successfully inserted in the lignin demonstrating the platform component of this work. Detailed characterization was performed by a combination of NMR techniques which include 1H NMR, COSY-90, 31P NMR, 13C NMR, 13C APT, HSQC, HMBC and HSQC TOCSY. Excellent selectivity towards benzylic carbon and a high functionalization degree were noted. The structure of lignin was tailored through the solvent system choice, with 50% aqueous acetone producing a skeletal structure favorable for a high degree of functionalization. Finally, material concepts are demonstrated using classical thiol-ene-and Diels-Alder-chemistries to show the potential for the thermoset and thermoplastic concepts, respectively. The functionalization concept presents unprecedented opportunities for the green production of lignin-based recyclable biomaterials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据