4.7 Article

Towards the design of an offline signature verifier based on a small number of genuine samples for training

期刊

EXPERT SYSTEMS WITH APPLICATIONS
卷 107, 期 -, 页码 182-195

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2018.04.035

关键词

Offline signature verification; Single Reference Signature System; Run-length distribution features; One-Class Support Vector Machine

向作者/读者索取更多资源

Signature verification has remained one of the most widely accepted modalities to authenticate an individual primarily due to the ease with which signatures can be acquired. Being a behavioral biometric modality, the intra-personal variability in signatures is rather high and extremely unpredictable. This leads to relatively higher error rates as compared to those realized by other biometric traits like iris or fingerprints. To address these issues, this study investigates run-length distribution features for designing an effective offline signature verification system. The objective of this research is to enhance the capabilities of automatic signature verification systems allowing them to work in a realistic fashion by training them using positive specimens (genuine signatures of each person) only without access to any forged samples. Classification is carried out using One-Class Support Vector Machine (OC-SVM) while the evaluations are performed using GPDS960 database, one of the largest offline signature corpus developed till date. Experimental results show the potential of the proposed system for detection of skilled forgeries, especially for the challenging case of a single reference signature in the training set. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据