4.7 Article

Antineoplastic activity of isoliquiritigenin, a chalcone compound, in androgen-independent human prostate cancer cells linked to G2/M cell cycle arrest and cell apoptosis

期刊

EUROPEAN JOURNAL OF PHARMACOLOGY
卷 821, 期 -, 页码 57-67

出版社

ELSEVIER
DOI: 10.1016/j.ejphar.2017.12.053

关键词

Prostate cancer; Isoliquiritigenin; Cell cycle arrest; CDK1; Microarray profiling

资金

  1. National Natural Science Foundation of China [81403146]
  2. Natural Science Foundation of Jiangsu Province [BK20160315]
  3. Suzhou Municipal Nature Science Foundation [SYS201515]
  4. Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) [IRT1075]

向作者/读者索取更多资源

Isoliquiritigenin is a natural chalcone derived from Glycyrrhiza, which has been reported to have anti-tumor activity in recent years. Here, we investigate the anticancer efficacy and associated mechanisms of isoliquiritigenin in human prostate cancer PC-3 and 22RV1 cells. Isoliquiritigenin (25-50 mu M) inhibited cell proliferation, induced cell apoptosis, and caused G2/M cell cycle arrest in vitro. This agent also repressed the growth of PC-3 xenograft tumors in vivo with the results of hematoxylin/eosin staining and immunohistochemistry staining showing differences between isoliquiritigenin-treated groups and control group. Next, we used microarray transcriptional profiling to identify isoliquiritigenin-regulated genes on PC-3 prostate cancer cells. Multiple genes involved in cell cycle, DNA damage, and apoptosis signaling pathways were changed remarkably with the treatment of isoliquiritigenin. Molecular studies revealed that G2/M arrest was associated with a decrease in cyclin B1, cyclin-dependent kinase 1 (CDK1), and phosphorylated CDK1 (Thr14, Tyr15, and Thr161), whereas the expression of 14-3-3 sigma and growth arrest and DNA damage-inducible 45 alpha (GADD45A) was increased. The complexes of cyclin B1-CDK1 were also examined to show a decrease in the binding of CDK1 with cyclin B1. In addition, treatment with relatively high concentrations of isoliquiritigenin induced apoptosis, mainly associated with enhancing apoptosis regulator (Bax/Bcl-2) ratio. Collectively, these findings indicate that isoliquiritigenin modulates cyclin B1-CDK1 for G2/M arrest, together with an alteration of cell cycle regulators and apoptotic factors in human prostate cancer cells. However, we observed pleiotropic effects for isoliquiritigenin in microarray results, suggesting that other biological mechanisms also contribute to its efficacy, which could be of interest for future investigations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据