4.6 Article

Development of PLGA nanoparticles loaded with clofazimine for oral delivery: Assessment of formulation variables and intestinal permeability

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejps.2017.11.004

关键词

Caco-2 cell monolayer permeation assay; Plackett-Burman design; PLGA nanoparticles; Poorly soluble drug

资金

  1. European Union (FEDER funds)
  2. FCT/MEC, Fundacao para a Ciencia e a Tecnologia [UID/MULTI/04378/2013 - POCI/01/0145/FEDER/007728]
  3. COMPETE Operational Programme for Competitiveness and Internationalisation (POCI), Portugal
  4. Portuguese funds through FCT Fundacao para a Ciencia e a Tecnologia/Ministerio da Ciencia, Tecnologia e Inovacao [POCI-01-0145-FEDER-007274]
  5. CNPq [246514/2012-4, 0831-12-3]
  6. CAPES Foundation [246514/2012-4, 0831-12-3]
  7. Ministry of Education of Brazil [246514/2012-4, 0831-12-3]
  8. FCT [SFRH/BPD/99124/2013]
  9. FCT/MEC, Ministerio da Educacao e Ciencia [UID/MULTI/04378/2013 - POCI/01/0145/FEDER/007728]

向作者/读者索取更多资源

The use of polymeric nanoparticles as delivery systems is a promising tool to overcome drawbacks related to low aqueous solubility of drugs, which limit their in vivo bioavailability. The aim of this study was to decrease clofazimine (CLZ) toxicity using experimental design to formulate CLZ loaded in PLGA nanoparticles (NPs-CLZ) through a Plackett-Burman design (PBD). A screening PBD was constructed with twelve formulations involving six variables among process and formulation parameters and the selected responses were particle size, polydispersity index (PDI), association efficiency (AE) and drug loading (DL). The formulation was achieved based on the desirability tool, and the obtained NPs-CLZ formulation was characterized regarding morphology, physicochemical properties, in vitro release and cellular studies. Particle size, PDI, AE and DL were found to be 211 +/- 3 nm, 0.211 +/- 0.009, 70 +/- 5% and 12 +/- 1%, respectively. Physicochemical studies confirmed the absence of chemical interactions between CLZ and other nanoparticles constituents and the amorphous state of CLZ, while morphological analysis revealed the spherical shape of the particles. In vitro release profile of CLZ from NPs-PLGA showed a slow pattern of drug release. Cell viability studies towards intestinal cells revealed that NPs-CLZ did not show CLZ toxicity on Caco-2 and HT29-MTX cells compared to free CLZ solutions. Moreover, CLZ could permeate Caco-2 monolayers substantially at the end of 8 h. It can be concluded that the proposed NPs-CLZ represent a promising platform to the oral delivery of CLZ as they were able to decrease its intrinsic toxicity, with improved absorption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据