4.7 Article

Elevating the fuel properties of Humulus lupulus, Plumeria alba and Calophyllum inophyllum L. through wet torrefaction

期刊

FUEL
卷 146, 期 -, 页码 88-94

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2015.01.005

关键词

Wet torrefaction; Fuel properties; Biomass; Solid fuel; Higher heating value

资金

  1. MEXT

向作者/读者索取更多资源

Wet torrefaction is an effective process to improve the fuel properties of a biomass. However, different biomasses have different component weight ratios and it is possible that not all biomasses are suitable for wet torrefaction treatment. Here we conducted wet torrefaction using three types of biomass with different component weight ratios: Humulus lupulus (HL, the common hop), Plumeria alba (PA, an evergreen shrub) and Calophyllum inophyllum L. (CIL, an evergreen tree). The fuel properties of the obtained solid fuels were characterized. We found that lignin made the main contribution to the solid fuel yield. The reactivity of cellulose and hemicellulose in each biomass was affected by the biomass species and the component weight ratio of the biomass. The wet torrefaction was observed to efficiently elevate the fuel properties of carbon content, atomic H/C and O/C ratios, higher heating value (HHV) and hydrophobicity of all three types of biomass. The HHVs of the solid fuels prepared at 260 degrees C are comparable to those of commercial coals such as Northumerland No. 81/2 Sem. Anth. Coal, Jhanjra Bonbahal Seam Coal-R-VII, and German Braunkohole lignite. These solid fuels could be co-combusted with German Braunkohole lignite without a significant change in the combustion properties of German Braunkohole lignite because of their similar atomic H/C and O/C ratios as well as HHVs. At the wet torrefaction temperature of 260 degrees C, the solid fuel delivered from CIL had lower HHV compared to those from HL and PA although CIL contained the highest lignin content, which has a higher HHV than those of cellulose and hemicellulose. Scanning electron microscopy images of the solid fuels revealed that wet torrefaction was able to completely destroy the biomass surface and create numerous pores and cracks on the solid fuels surface, indicating that the solid fuels have the potential to be used as a source of carbon materials such as activated carbon in addition to their use as bio-fuels. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据