4.7 Article Proceedings Paper

Optimization of photo-Fenton process for the treatment of prednisolone

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 25, 期 28, 页码 27768-27782

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-018-1782-z

关键词

Photolysis; Fenton; Advanced oxidation processes; Pharmaceutical; Degradation

资金

  1. Spanish Ministry of Economy and Competitiveness
  2. ERDF Funds
  3. Xunta de Galicia [CTM2017-87326-R, ED431C 2017/47]

向作者/读者索取更多资源

Prednisolone is a widely prescribed synthetic glucocorticoid and stated to be toxic to a number of non-target aquatic organisms. Its extensive consumption generates environmental concern due to its detection in wastewater samples at concentrations ranged from ng/L to g/L that requests the application of suitable degradation processes. Regarding the actual treatment options, advanced oxidation processes (AOPs) are presented as a viable alternative. In this work, the comparison in terms of pollutant removal and energetic efficiencies, between different AOPs such as Fenton (F), photo-Fenton (UV/F), photolysis (UV), and hydrogen peroxide/photolysis (UV/H2O2), was carried out. Light diode emission (LED) was the selected source to provide the UV radiation. The UV/F process revealed the best performance, reaching high levels of both degradation and mineralization with low energy consumption. Its optimization was conducted and the operational parameters were iron and H2O2 concentrations and the working volume. Using the response surface methodology with the Box-Behnken design, the effect of independent variables and their interactions on the process response were effectively evaluated. Different responses were analyzed taking into account the prednisolone removal (TOC and drug abatements) and the energy consumptions associated. The obtained model showed an improvement of the UV/F process when treating smaller volumes and when adding high concentrations of H2O2 and Fe2+. The validation of this model was successfully carried out, having only 5% of discrepancy between the model and the experimental results. Finally, the performance of the process when having a real wastewater matrix was also tested, achieving complete mineralization and detoxification after 8h. In addition, prednisolone degradation products were identified. Finally, the obtained low energy permitted to confirm the viability of the process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据