4.8 Article

Coupling between Nitrogen Fixation and Tetrachlorobiphenyl Dechlorination in a Rhizobium-Legume Symbiosis

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 52, 期 4, 页码 2217-2224

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.7b05667

关键词

-

资金

  1. National Natural Science Foundation of China [41371309, 41671327, 41230858]
  2. Outstanding Youth Fund of Jiangsu Province [BK20150049]
  3. ARC DECRA Fellowship [DE170100310]

向作者/读者索取更多资源

Legume-rhizobium symbioses have the potential to remediate soils contaminated with chlorinated organic compounds. Here, the model symbiosis between Medicago sativa and Sinorhizobium meliloti was used to explore the relationships between symbiotic nitrogen fixation and transformation of tetrachlorobiphenyl PCB 77 within this association. 45-day-old seedlings in vermiculite were pretreated with 5 mg L-1 PCB 77 for 5 days. In PCB-supplemented nodules, addition of the nitrogenase enhancer molybdate significantly stimulated dechlorination by 7.2-fold and reduced tissue accumulation of PCB 77 (roots by 96% and nodules by 93%). Conversely, dechlorination decreased in plants exposed to a nitrogenase inhibitor (nitrate) or harboring nitrogenase-deficient symbionts (nifA mutant) by 29% and 72%, respectively. A range of dechlorinated products (biphenyl, methylbiphenyls, hydroxylbiphenyls, and trichlorobiphenyl derivatives) were detected within nodules and roots under nitrogen-fixing conditions. Levels of nitrogenase-derived hydrogen and leghemoglobin expression correlated positively with nodular dechlorination rates, suggesting a more reducing environment promotes PCB dechlorination. Our findings demonstrate for the first time that symbiotic nitrogen fixation acts as a driving force for tetrachlorobiphenyl dechlorination. In turn, this opens new possibilities for using rhizobia to enhance phytoremediation of halogenated organic compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据