4.7 Article

Potential strong contribution of future anthropogenic land-use and land-cover change to the terrestrial carbon cycle

期刊

ENVIRONMENTAL RESEARCH LETTERS
卷 13, 期 6, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1748-9326/aac4c3

关键词

carbon cycle; attribution; land cover changes; deforestation; greening; land carbon storage; Earth system model

资金

  1. EC FP7 LUC4C project [603542]

向作者/读者索取更多资源

Anthropogenic land-use and land cover changes (LULCC) affect global climate and global terrestrial carbon (C) cycle. However, relatively few studies have quantified the impacts of future LULCC on terrestrial carbon cycle. Here, using Earth system model simulations performed with and without future LULCC, under the RCP8.5 scenario, we find that in response to future LULCC, the carbon cycle is substantially weakened: browning, lower ecosystem C stocks, higher C loss by disturbances and higher C turnover rates are simulated. Projected global greening and land C storage are dampened, in all models, by 22% and 24% on average and projected C loss by disturbances enhanced by similar to 49% when LULCC are taken into account. By contrast, global net primary productivity is found to be only slightly affected by LULCC (robust + 4% relative enhancement compared to all forcings, on average). LULCC is projected to be a predominant driver of future C changes in regions like South America and the southern part of Africa. LULCC even cause some regional reversals of projected increased C sinks and greening, particularly at the edges of the Amazon and African rainforests. Finally, in most carbon cycle responses, direct removal of C dominates over the indirect CO2 fertilization due to LULCC. In consequence, projections of land C sequestration potential and Earth's greening could be substantially overestimated just because of not fully accounting for LULCC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据