4.6 Article

Scrutiny of interference effect of ions and organic matters on water treatment using supported nanoscale zero-valent iron

期刊

ENVIRONMENTAL EARTH SCIENCES
卷 77, 期 13, 页码 -

出版社

SPRINGER
DOI: 10.1007/s12665-018-7661-6

关键词

Supported nanoscale zero-valent iron; Nitrate decontamination; Phosphate entrapment; Hardness; Interference studies; Wastewater

资金

  1. Kyushu University, Fukuoka, Japan
  2. Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)

向作者/读者索取更多资源

Nanoscale zero-valent iron (nZVI) supported on heat-modified activated charcoal (nFe(0)/AC) can improve nitrate reduction and phosphate adsorption regarding reaction conversion, adsorption capacity, and kinetics. It is more effective in terms of mobility and stability than bare nZVI. Both nZVI and its supported type were synthesized, characterized, and examined in interference studies for applications in environmental remediation technologies. Solutions of 45.18 mg nitrate-N/L, 50 mg phosphorus/L, and a mixture of them were treated using nZVI and nFe(0)/AC in municipal wastewater body and also deionized water body in the coexistence of anions (phosphate and sulfate), cations (cuprous and cupric), organic matters (humic acid), and hardness (calcium carbonates) at different concentrations. Results showed the significant impact of interference on nitrate reduction and superiority of nFe(0)/AC by ca. 27% to ca. 183% increase in treatment efficiency over nZVI. Anions were easily attracted to the surface of nano-iron particles resulting in a negative intervening effect. Hardness and contaminants of municipal wastewater provided a negative impact and significantly interfered with nitrate removal, while organic matters had a lower negative interference compared to others. On the contrary, copper cations could improve removal efficiency until complete elimination of nitrate. The experimental data were best-fitted to a kinetic rate model that combined the pseudo-first-order rate with the deactivation rate arising from the passivation of interfering substances on the surface of nZVI-based materials. The value of parameters of this rate equation could estimate the degree and type of interference occurring during nitrate decontamination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据