4.7 Article Proceedings Paper

Modelling smart energy systems in tropical regions

期刊

ENERGY
卷 155, 期 -, 页码 592-609

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2018.05.007

关键词

Air pollution; Energy storage modelling; District cooling; Smart cities; Smart energy system; Tropical climate

资金

  1. Cities project - Danish Innovationsfond [DSF 1305-00027B]

向作者/读者索取更多资源

A large majority of energy systems models of smart urban energy systems are modelling moderate climate with seasonal variations, such as the European ones. The climate in the tropical region is dominated by very high stable temperatures and high humidity and lacks the moderate climate's seasonality. Furthermore, the smart energy system models tend to focus on CO2 emissions only and lack integrated air pollution modelling of other air pollutants. In this study, an integrated urban energy system for a tropical climate was modelled, including modelling the interactions between power, cooling, gas, mobility and water desalination sectors. Five different large scale storages were modelled, too. The developed linear optimization model further included endogenous decisions about the share of district versus individual cooling, implementation of energy efficiency solutions and implementation of demand response measures in buildings and industry. Six scenarios for the year 2030 were developed in order to present a stepwise increase in energy system integration in a transition to a smart urban energy system in Singapore. The economically best performing scenario had 48% lower socio-economic costs, 68% lower CO(2)e emissions, 15% higher particulate matter emissions and 2% larger primary energy consumption compared to a business-as-usual case. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据