4.7 Article

Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 87, 期 -, 页码 15-25

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2015.05.045

关键词

Ionizing radiation; Oxidative stress; Hematopoietic stem cells; Radioprotection; Metformin; Free radicals

资金

  1. National Program on Key Basic Research Project (973 Program) [2011CB964800-G]
  2. National Natural Science Foundation of China [81129020, 81372928]
  3. Natural Science Foundation of Tianjin [15JCZDJC35200]
  4. U.S. National Institutes of Health [CA122023]

向作者/读者索取更多资源

Exposure to ionizing radiation (IR) increases the production of reactive oxygen species (ROS) not only by the radiolysis of water but also through IR-induced perturbation of the cellular metabolism and disturbance of the balance of reduction/oxidation reactions. Our recent studies showed that the increased production of intracellular ROS induced by IR contributes to IR-induced late effects, particularly in the hematopoietic system, because inhibition of ROS production with an antioxidant after IR exposure can mitigate IR-induced long-term bone marrow (BM) injury. Metformin is a widely used drug for the treatment of type 2 diabetes. Metformin also has the ability to regulate cellular metabolism and ROS production by activating AMP-activated protein kinase. Therefore, we examined whether metformin can ameliorate IR-induced long-term BM injury in a total-body irradiation (TBI) mouse model. Our results showed that the administration of metformin significantly attenuated TBI-induced increases in ROS production and DNA damage and upregulation of NADPH oxidase 4 expression in BM hematopoietic stem cells (HSCs). These changes were associated with a significant increase in BM HSC frequency, a considerable improvement in in vitro and in vivo HSC function, and complete inhibition of upregulation of p16(Ink4a) in HSCs after TEL These findings demonstrate that metformin can attenuate TBI-induced long-term BM injury at least in part by inhibiting the induction of chronic oxidative stress in HSCs and HSC senescence. Therefore, metformin has the potential to be used as a novel radioprotectant to ameliorate TBI-induced long-term BM injury. (C) 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommuns.org/licenses/byond/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Correction Biochemistry & Molecular Biology

miR-196a provides antioxidative neuroprotection via USP15/Nrf2 regulation in Huntington's disease (vol 209, pg 292, 2023)

Siew Chin Chan, Chih-Wei Tung, Chia-Wei Lin, Yun-Shiuan Tung, Po-Min Wu, Pei-Hsun Cheng, Chuan-Mu Chen, Shang-Hsun Yang

FREE RADICAL BIOLOGY AND MEDICINE (2024)

Article Biochemistry & Molecular Biology

Ribosome-targeting antibiotic control NLRP3-mediated inflammation by inhibiting mitochondrial DNA synthesis

Suyuan Liu, Meiling Tan, Jiangxue Cai, Chenxuan Li, Miaoxin Yang, Xiaoxiao Sun, Bin He

Summary: This study reveals that the antibiotic doxycycline effectively inhibits NLRP3 inflammasome activation by targeting mitochondrial translation and mtDNA synthesis, offering potential for the treatment of NLRP3-related diseases.

FREE RADICAL BIOLOGY AND MEDICINE (2024)

Article Biochemistry & Molecular Biology

Protectin D1 inhibits TLR4 signaling pathway to alleviate non-alcoholic steatohepatitis via upregulating IRAK-M

Hao Liu, Nana Li, Ge Kuang, Xia Gong, Ting Wang, Jun Hu, Hui Du, Minxuan Zhong, Jiashi Guo, Yao Xie, Yang Xiang, Shengwang Wu, Yiling Yuan, Xinru Yin, Jingyuan Wan, Ke Li

Summary: Protectin D1 (PTD1) improves hepatic steatosis, inflammation and fibrosis in a NASH mouse model by inhibiting the activation of TLR4 downstream signaling pathway, possibly through upregulation of IRAK-M expression, suggesting a potential new treatment for NASH.

FREE RADICAL BIOLOGY AND MEDICINE (2024)