4.7 Article

Flexural and shear behaviour of layered sandwich beams

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 173, 期 -, 页码 429-442

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2018.04.068

关键词

Composite beam; Orientation of sandwich panel; Shear span-to-depth ratio; Flexure; Shear; Finite element analysis

资金

  1. Australian Postgraduate Award (APA) scholarship from the University of Southern Queensland, Australia
  2. Australian Government

向作者/读者索取更多资源

A new type of composite beam, referred to as Layered Sandwich Beam (LSB) is introduced in this study. The sandwich system consists of Glass Fiber Reinforced Polymer (GFRP) skins and Phenolic cores, and several layers of sandwich panels are bonded together with epoxy polymer matrix for manufacturing beams. To explore the suitability of this novel concept for structural applications, the flexural and shear behaviour of LSB have been investigated. Eight LSB, with four having layers horizontally oriented and the other four vertically oriented, have been tested under four-point bending and asymmetrical beam shear. A three-dimensional finite element model was developed using Strand7 to further understand the fundamental behaviour of the LSB. The results showed that the LSB has an increased sectional stability by preventing wrinkling and buckling of the composite skins and indentation failure. This improved the bending and shear strengths of the vertical LSB by 25% and 100%, respectively, compared with single sandwich beams in same orientation. While horizontal LSB provided a higher bending stiffness, the vertical beams exhibited higher shear strength due to the orientation of the skins. The finite element model can reliably predict the fundamental behaviour of the LSB in different orientations and loading configurations, within -10% to +14%. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据