4.7 Article

Full Gibbs Sampling Procedure for Bayesian System Identification Incorporating Sparse Bayesian Learning with Automatic Relevance Determination

期刊

出版社

WILEY
DOI: 10.1111/mice.12358

关键词

-

资金

  1. George W. Housner Earthquake Engineering Research fund at the California Institute of Technology
  2. National Natural Science Foundation of China [51778192, 51308161]

向作者/读者索取更多资源

Bayesian system identification has attracted substantial interest in recent years for inferring structural models and quantifying their uncertainties based on measured dynamic response in a structure. The relative plausibility of each structural model in a specified model class is quantified by its posterior probability from Bayes' Theorem. The relative plausibility of each model class within a set of candidate model classes for the structure can also be assessed via Bayes' Theorem. Computation of this posterior probability over all candidate model classes automatically applies a quantitative Ockham's razor that trades off a data-fit measure with an information-theoretic measure of model complexity, which penalizes model classes that over-fit the data. In this article, we first present a general Bayesian system identification framework and point out that combining it with sparse Bayesian learning (SBL) is an effective strategy to implement the Bayesian Ockham razor. Then we review our recent progress in exploring SBL with the automatic relevance determination likelihood concept to detect and quantify spatially sparse substructure stiffness reductions. To characterize the full posterior uncertainty for this problem, an improved Gibbs sampling procedure for SBL is then developed. Finally, illustrative results are provided to compare the performance and validate the capability of the presented SBL algorithms for structural system identification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据