4.7 Article

A polytree-based adaptive polygonal finite element method for multi-material topology optimization

期刊

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2017.07.035

关键词

Polytree; Topology optimization; Multi-material; Optimality criteria method; Adaptive filter; Alternating active phase

向作者/读者索取更多资源

This study presents a polytree-based adaptive methodology for multi-material topology optimization (MMTOP). Polytree data structure is introduced as a general recursive multi-level mesh that is automatically refined in processing based on error analysis. In order to resolve hanging nodes in element edges, the Wachspress coordinate is employed on a reference element before using a mapping scheme to obtain shape functions and their derivatives for any polygons. A new definition of filter radius is also proposed to improve the efficiency of filters and optimized results. The combination of polytree meshes and adaptive filters not only clarifies the interfaces between material phases (including void phase), but also decreases the computing time of the overall process in comparison to using the regular fine meshes. Several benchmark and practical problems are considered to show distinct features of the proposed method. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据