4.5 Article

Defect and damage evolution during spallation of single crystal Al: Comparison between molecular dynamics and quasi-coarse-grained dynamics simulations

期刊

COMPUTATIONAL MATERIALS SCIENCE
卷 145, 期 -, 页码 68-79

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.commatsci.2017.12.032

关键词

Shock; Molecular dynamics; Dislocations; Spallation; Mesoscale modeling

资金

  1. U.S. Army Research Office [W911NF-14-1-0257]

向作者/读者索取更多资源

The links between loading orientation of single crystal Al and the dynamic evolution of defects (dislocations, twins, stacking faults etc.) during spallation are investigated using molecular dynamics (MD) simulations. The microstructural evolution during the shock compression of single crystal Al is observed to be primarily guided by the nucleation and evolution of Shockley partials and twin partials. The shock response and spallation behavior of single crystal Al is observed to be anisotropic and is influenced by the density of various types of dislocations during shock compression and void nucleation at the spall plane. The capability of the quasi-coarse-grained dynamics (QCGD) method to reproduce the MD predicted nucleation, interaction and evolution of dislocations during shock compression and spallation of single crystal Al is discussed. The QCGD method retains the relative contribution of different types of dislocations during propagation of shock compression wave, interactions of the wave and spallation of single crystal Al as predicted by MD using a fraction of representative atoms allowing the modeling of of larger sized systems for larger times. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据