4.7 Article

Atomistic-continuum modeling of vibrational behavior of carbon nanotubes using the variational differential quadrature method

期刊

COMPOSITE STRUCTURES
卷 185, 期 -, 页码 728-747

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2017.11.028

关键词

Atomistic-continuum modeling; Higher-order Cauchy-Born rule; Vibration; Carbon nanotube; Variational differential quadrature

向作者/读者索取更多资源

A numerical approach is adopted for the multiscale analysis of vibrations of single-walled carbon nanotubes (SWCNTs). The SWCNT is modeled by a hyperelastic membrane whose kinematics is described using the higher-order Cauchy-Born rule. The constitutive model is formulated exclusively in terms of the interatomic potential, so, it inherits the atomistic information and involves no other phenomenological input. The variational differential quadrature (VDQ) method is employed in which the continuum model is discretized using DQ, and a weak form of equation of motion is obtained via a variational approach. VDQ is computationally advantageous since it has a fast rate of convergence and can reproduce the results of molecular dynamics simulations. Detailed investigations into frequencies and mode shapes of SWCNTs with different geometrical parameters, boundary conditions and chiralities are carried out. It is found that short nanotubes display a coupling between the axial/torsional and bending modes. Also, as the tube diameter or length increases, mode transitions are made at several critical points. If the edge supports are more flexible and tube length is longer, the critical diameters are larger. Eventually, the vibration characteristics of axially strained nanotubes are analyzed, and it is concluded that SWCNTs with smaller radii have higher strain sensitivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据