4.6 Article

Flower-like-flake Fe3O4/g-C3N4 nanocomposite: Facile synthesis, characterization, and enhanced photocatalytic performance

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfa.2017.10.053

关键词

Fe3O4/g-C3N4; Rhodamine B; Photocatalysis; Visible light

资金

  1. Young and Middle-aged Academic Key Members of Anhui University of Science and Technology, Doctor's degree Innovation Training Program [2013bj1105]
  2. International cooperative project of Anhui Province [12030-603003]

向作者/读者索取更多资源

A novel, magnetically separable, and stable Fe3O4/graphitic carbon nitride (g-C3N4) nanocomposites were prepared using a facile method. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and UV-vis diffuse reflectance spectroscopy. The photocatalysis capability and stability of the as-prepared samples were studied by the degradation of rhodamine B (RhB) under simulated sun irradiation. In addition, the degree of mineralization of RhB and the optimum conditions (pH and dosage of catalyst) for the reaction system were investigated. Tetracycline was used to remove the sensitization effect. Fe3O4/g-C3N4 nanocomposites not only had higher photocatalytic activity but also obtained magnetic property and stronger stability, which are important for the reuse in water pollutant treatment. Photoelectrochemical activities of Fe3O4/g-C3N4 were also investigated. The photocurrent enhancement indicates a higher separation efficiency of electrons and holes due to the heterojunction between Fe3O4 and g-C3N4. RhB degradation improved under acidic conditions and simulated sun irradiation, given that more center dot OH is produced because of the oxidation of Fenton. The h(+) is a main participant in the degradation of RhB. Active species analysis showed that dissolved oxygen plays an important role in the formation of reactive species (center dot O-2(-) and center dot OH), which are also important participants in the degradation of RhB.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据