4.5 Article

Revisiting habitat and lifestyle transitions in Heteroptera (Insecta: Hemiptera): insights from a combined morphological and molecular phylogeny

期刊

CLADISTICS
卷 35, 期 1, 页码 67-105

出版社

WILEY
DOI: 10.1111/cla.12233

关键词

-

资金

  1. US National Science Foundation [DEB 9726587, DEB 1257702]
  2. University of California, Riverside
  3. Australian Museum
  4. American Museum of Natural History

向作者/读者索取更多资源

Heteroptera, the true bugs, are part of the largest clade of non-holometabolous insects, the Hemiptera, and include > 42 000 described species in about 90 families. Despite progress in resolving phylogenetic relationships between and within infraorders since the first combined morphological and molecular analysis published in 1993 (29 taxa, 669 bp, 31 morphological characters), recent hypotheses have relied entirely on molecular data. Weakly supported nodes along the backbone of Heteroptera made these published phylogenies unsuitable for investigations into the evolution of habitats and lifestyles across true bugs. Here we present the first combined morphological and molecular analyses of Heteroptera since 1993, using 135 taxa in 60 families, 4018 aligned bp of ribosomal DNA and 81 morphological characters, and various analytical approaches. The sister-group relationship of the predominantly aquatic Nepomorpha with all remaining Heteroptera is supported in all analyses, and a clade formed by Enicocephalomorpha, Dipsocoromorpha and Gerromorpha in some. All analyses recover Leptopodomorpha + (Cimicomorpha + Pentatomomorpha), mostly with high support. Parsimony- and likelihood-based ancestral state reconstructions of habitats and lifestyles on the combined likelihood phylogeny provide new insights into the evolution of true bugs. The results indicate that aquatic and semi-aquatic true bugs invaded these habitats three times independently from terrestrial habitats in contrast to a recent hypothesis. They further suggest that the most recent common ancestor of Heteroptera was predacious, and that the two large predominantly phytophagous clades (Trichophora and Miroidea) are likely to have derived independently from predatory ancestors. We conclude that by combining morphological and molecular data and employing various analytical methods our analyses have converged on a relatively well-supported hypothesis of heteropteran infraordinal relationships that now requires further testing using phylogenomic and more extensive morphological datasets. (c) The Willi Hennig Society 2018.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据