4.6 Article

Dual solutions for mixed convective stagnation-point flow of an aqueous silica-alumina hybrid nanofluid

期刊

CHINESE JOURNAL OF PHYSICS
卷 56, 期 5, 页码 2465-2478

出版社

ELSEVIER
DOI: 10.1016/j.cjph.2018.06.013

关键词

Hybrid nanofluid; Analytic model; Mixed convection; Stagnation point; Dual solutions

资金

  1. UESISCDI, Romania [PN-III-P4-ID-PCE-2016-0036]

向作者/读者索取更多资源

Hybrid nanofluid as an extension of nanofluid is obtained by dispersing composite nano-powder or several different nanoparticles in the base fluid. Hybrid nanofluids are potential fluids that offer better heat transfer performance and thermophysical properties than convectional heat transfer fluids (oil, water and ethylene glycol) and nanofluids with single nanoparticles. Here, a kind of hybrid nanofluid including silicon dioxide (SiO2) and aluminum oxide (Al2O3) nano-size particles with water as base fluid is analytically modeled to develop the problem of the steady laminar MHD mixed convection boundary layer flow of a SiO2-Al2O3/water hybrid nanofluid near the stagnation-point on a vertical permeable flat plate. The flow of nanofluids near the stagnation point has recently attracted the attention of many investigators because of its wide applications in the local cooling/heating processes, especially in industries of electronic devices and nuclear reactors. In first, analytic modeling of hybrid nanofluid is presented and using appropriate similarity variables, the governing PDEs are transformed into nonlinear ODEs in the dimensionless stream function, which is solved numerically applying the function bvp4c from MATLAB. Our results demonstrate that the developed model can be used with great confidence to study the flow and heat transfer of hybrid nanofluids. Moreover, dual solutions of hybrid nanofluid flow for both assisting and opposing regimes are observed, where the range of the mixed convection parameter for which the solution exists, increases with the volume fraction of second nanoparticle and magnetic field. Finally, the heat transfer rate of nanofluids and hybrid nanofluids with different values of nanoparticles volume fraction have been compared that HNF3 (phi(SiO2) = phi(Al2O3) = 0.1) has the largest heat transfer rate between all cases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据