4.6 Article

Impact of Hydrophobic Organohybrid Silicas on the Stability of Ni2P Catalyst Phase in the Hydrodeoxygenation of Biophenols

期刊

CHEMCATCHEM
卷 10, 期 10, 页码 2219-2231

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cctc.201702001

关键词

catalyst deactivation; hydrodeoxygenation; organosilanes; support surface polarity; tetraethyl orthosilicate

资金

  1. European Commission [604307]
  2. ERC Consolidator Grant (LIGNINFIRST) [725762]
  3. Royal Society
  4. EPSRC [EP/K000616/2]

向作者/读者索取更多资源

Hydrodeoxygenation (HDO) of lignocellulose-derived pyrolysis oils offers an option to produce fuel substitutes. However, catalyst deactivation and stability constitute a significant issue. Herein, the dependence of stability and activity of Ni2P/SiO2 HDO catalysts on the support surface polarity is addressed in detail. The support surface polarity was adjusted by copolymerizing tetraethyl orthosilicate (TEOS) with different types and amounts of organosilanes by a sol-gel process in the presence of nickel nitrate and citric acid. After thermal treatment under an inert atmosphere, Ni/SiO2 precursors were formed. They were converted into Ni2P/SiO2 catalysts by using NaH2PO2 as a PH3 source. The catalyst surface polarity was characterized by inverse gas chromatography measurements of the free energy of methanol adsorption, and specific and dispersive surface energies derived from polar and nonpolar probe molecule adsorption. The correlation between catalyst performance and support surface polarity indicates that, to prevent deactivation of the catalyst by water under reaction conditions, the affinity of the support towards polar substances must be decreased below a threshold value.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据