4.7 Article

Fabrication of novel metal ion imprinted xanthan gum-layered double hydroxide nanocomposite for adsorption of rare earth elements

期刊

CARBOHYDRATE POLYMERS
卷 194, 期 -, 页码 274-284

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2018.04.054

关键词

Adsorption; Gum xanthan; Nanocomposite; Photocatalyst; Rare earth elements

向作者/读者索取更多资源

The work focus to enhance the properties of xanthan gum (XG) by anchoring metal ions (Fe, Zr) and encapsulating inorganic matrix (M@ XG-ZA). The fabricated nanocomposite was characterized by Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX), Fourier Transform Infrared Spectroscopy (FTIR), surface area (BET) and zeta potential analysis. The adsorption of Sc, Nd, Tm and Yb was investigated after screening of synthesized materials in detail to understand the influence of pH, contact time, temperature and initial REE (rare earth element) concentration both in single and multicomponent system via batch adsorption. The adsorption mechanism was verified by FTIR, SEM and elemental mapping. The SEM images of Zr@ XG-ZA demonstrate scutes structure, which disappeared after adsorption of REEs. The maximum adsorption capacities were 132.30, 14.01, 18.15 and 25.73 mg/g for Sc, Nd, Tm and Yb, respectively. The adsorption efficiency over Zr@ XG-ZA in multicomponent system was higher than single system and the REEs followed the order: Sc > Yb > Tm > Nd. The Zr@ XG-ZA demonstrate good adsorption behavior for REEs up to five cycles and then it can be used as photocatalyst for the degradation of tetracycline. Thus, the work adds a new insight to design and preparation of efficient bifunctional adsorbents from sustainable materials for water purification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Thermodynamics

Power, cooling, freshwater, and hydrogen production system from a new integrated system working with the zeotropic mixture, using a flash-binary geothermal system

Mingming Zhang, Anton Timoshin, Essam A. Al-Ammar, Mika Sillanpaa, Guiju Zhang

Summary: The current paper proposes a new hybrid system based on a binary-geothermal system to generate power, cooling capacity, freshwater, and hydrogen. The system integrates organic Rankine cycle, ejector refrigeration cycle, proton exchange membrane electrolyzer, and reverse osmosis desalination unit. Through precise modeling in Matlab, the system's performance is optimized using multi-objective grey wolf optimization. Results show that the system can achieve high power output, cooling capacity, hydrogen production, and freshwater generation with cost-effectiveness.

ENERGY (2023)

Article Materials Science, Ceramics

Sol-gel synthesis and characterization of heterogeneous Fenton catalysts for enhanced carbamazepine degradation

Andrei Ivanets, Vladimir Prozorovich, Olim Ruzimuradov, Xintai Su, Ahmad Hosseini-Bandegharaei, Zhao Wang, Varsha Srivastava, Mika Sillanpaa

Summary: A novel nanostructured Fenton-like catalyst based on La-doped MgFe2O4 was developed to enhance the degradation of carbamazepine. The physicochemical properties of the catalyst were studied, and the optimal conditions for maximum degradation efficiency were determined. The developed catalyst demonstrated high stability and efficiency, making it suitable for treating wastewaters polluted with organic active compounds.

JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY (2023)

Review Green & Sustainable Science & Technology

Efficient detection and treatment of pharmaceutical contaminants to produce clean water for better health and environmental

Mokgehle R. Letsoalo, Thandiwe Sithole, Steven Mufamadi, Zvanaka Mazhandu, Mika Sillanpaa, Ajeet Kaushik, Tebogo Mashifana

Summary: The presence of pharmaceutical contaminants (PCs) in the environment, including water and aquatic life, is a continuous threat to human health and the natural cycle. In particular, the accumulation of non-degradable water-soluble residues in water streams and groundwater has raised serious concerns and is now a focus of the United Nations' Sustainable Development Goals 2030. This article explores the challenges and potential solutions for the selective detection and efficient remediation of PCs in wastewater using nano-enabled functional systems.

JOURNAL OF CLEANER PRODUCTION (2023)

Article Environmental Sciences

Wastewater Management Using Coagulation and Surface Adsorption through Different Polyferrics in the Presence of TiO2-g-PMAA Particles

Heba Saed Kariem Alawamleh, Seyedsahand Mousavi, Danial Ashoori, Hayder Mahmood Salman, Sasan Zahmatkesh, Mika Sillanpaa

Summary: The study aims to improve the performance of membrane treatment for oily wastewater. The effects of pre-treatment, membrane modification, and operational parameters on the microfiltration membrane system were investigated. The results showed that using PFS as a coagulant at pH=6 can achieve a COD reduction of 98%, while using PFC at the same conditions only removes 81% of COD.
Article Green & Sustainable Science & Technology

Optimization of Engineering and Process Parameters for Vermicomposting

Rajesh Babu Katiyar, Suresh Sundaramurthy, Anil Kumar Sharma, Suresh Arisutha, Moonis Ali Khan, Mika Sillanpaa

Summary: Urbanization and population growth lead to a substantial increase in solid waste generation. Vermicomposting, which employs earthworms to recycle solid waste, proves to be a sustainable solution. This study explores the impact of earthworm-processed solid waste manure (vermicompost) on the growth, productivity, and chemical characteristics of chili and brinjal plants in different wooden reactors. The findings reveal that polyculture reactors with vermicompost soil exhibit significantly higher yields of both chili and brinjal compared to monoculture reactors.

SUSTAINABILITY (2023)

Article Chemistry, Physical

Green Synthesis and Photocatalytic Dye Degradation Activity of CuO Nanoparticles

Sadia Aroob, Sonia A. C. Carabineiro, Muhammad Babar Taj, Ismat Bibi, Ahmad Raheel, Tariq Javed, Rana Yahya, Walla Alelwani, Francis Verpoort, Khanita Kamwilaisak, Saleh Al-Farraj, Mika Sillanpaa

Summary: In this study, CuO nanoparticles were synthesized by a simple, one-pot mechanochemical approach using the leaf extract of Seriphidium oliverianum as a reducing and stabilizing agent. The CuO NPs showed high potential for degrading water-soluble industrial dyes, with degradation rates of 65.231% +/- 0.242 for methyl green (MG) and 65.078% +/- 0.392 for methyl orange (MO). This bio-mechanochemically synthesized CuO NPs are promising candidates for efficient dye removal from water.

CATALYSTS (2023)

Article Chemistry, Analytical

Detection of Levofloxacin Using a Simple and Green Electrochemically Polymerized Glycine Layered Carbon Paste Electrode

Kanthappa Bhimaraya, Jamballi G. Manjunatha, Karnayana P. Moulya, Ammar M. Tighezza, Munirah D. Albaqami, Mika Sillanpaa

Summary: The electrochemically polymerized glycine layered carbon paste electrode (EPGNLCPE) was used as an easy and rapid analytical tool for the analysis of levofloxacin (LN). The EPGNLCPE sensor, compared to the bare carbon paste electrode (BCPE), showed improved surface features and activities. Under optimized conditions, the differential pulse voltammetry method using EPGNLCPE exhibited good linearity, low limit of detection, and low limit of quantification for the analysis of LN. Real-time application of the sensor showed good recovery of LN in medicinal samples.

CHEMOSENSORS (2023)

Review Engineering, Environmental

Metal-organic framework membrane for waterborne micro/nanoplastics treatment

Thuhin Kumar Dey, Jingwei Hou, Mika Sillanpaa, Biplob Kumar Pramanik

Summary: Micro/nanoplastics (MPs/NPs) are widespread and pose a significant threat to the environment. Metal-organic frameworks (MOFs)-based membranes have gained attention for their potential in removing MPs/NPs from water and wastewater. However, challenges such as re-aggregation, cross-contamination, and poor structural stability need to be addressed for the successful application of MOF membranes.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Engineering, Chemical

Synthesis of novel mesoporous selenium-doped biochar with high-performance sodium diclofenac and reactive orange 16 dye removals

Glaydson S. dos Reis, Julie Thivet, Ewen Laisne, Varsha Srivastava, Alejandro Grimm, Eder C. Lima, Davide Bergna, Tao Hu, Mu. Naushad, Ulla Lassi

Summary: In this study, a selenium-doped mesoporous biochar was successfully prepared and used for the adsorption of sodium diclofenac and reactive orange 16 dye. The selenium doping significantly affected the morphology and physicochemical properties of the biochar. The developed biochar exhibited high adsorption capacity for both molecules, driven by multiple mechanisms including pore filling, pi-pi interaction, and hydrogen bonding. This work provides a feasible approach for the development of selenium-doped biochar adsorbents for wastewater treatment.

CHEMICAL ENGINEERING SCIENCE (2023)

Article Chemistry, Physical

Low-cost date palm fiber activated carbon for effective and fast heavy metal adsorption from water: Characterization, equilibrium, and kinetics studies

Abir Melliti, Murat Yilmaz, Mika Sillanpaa, Bechir Hamrouni, Radek Vurm

Summary: In this study, low-cost activated carbon (AC-DPF) made from date palm fiber waste was used to remove lead and copper from water systems. AC-DPF had a large surface area and high adsorption capacity, with removal efficiencies of 92% for Pb(II) and 80% for Cu(II). The adsorption kinetics and thermodynamics of AC-DPF were investigated, and competitive and antagonistic effects were observed in the multicomponent system. Overall, AC-DPF showed great potential as a highly promising, effective, and feasible adsorbent for heavy metal removal.

COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS (2023)

Article Biochemistry & Molecular Biology

Kinetics and Optimization of Metal Leaching from Heat-Resistant Nickel Alloy Solid Wastes

Imran Ali, Anastasya Gaydukova, Tatiana Kon'kova, Zeid Abdullah ALOthman, Mika Sillanpaa

Summary: This study investigated the acid leaching process of grinding waste from a heat-resistant nickel alloy. Optimal conditions for acid dissolution were established to maximize the extraction of nickel, the main component of the alloy. These results are significant for industry professionals in metal recovery and environmentalists in waste treatment.

MOLECULES (2023)

Review Chemistry, Multidisciplinary

Current Status and Challenges for Metal-Organic-Framework-Assisted Conversion of Biomass into Value-Added Chemicals

Varsha Srivastava, Katja Lappalainen, Annu Rusanen, Gabriel Morales, Ulla Lassi

Summary: This review focuses on the catalytic transformation of lignocellulosic biomass into value-added chemicals using MOF-based catalyst/composite materials. The tunability of MOF-based catalysts allows for tailoring their catalytic activity and selectivity through functionalization. The production of HMF and Furfural from lignocellulosic biomass is emphasized due to their versatility as intermediates for various biobased chemicals and fuels. The effects of different experimental parameters on biomass conversion by MOF-based catalysts are also discussed.

CHEMPLUSCHEM (2023)

Article Chemistry, Physical

An Efficient Investigation and Machine Learning-Based Prediction of Decolorization of Wastewater by Using Zeolite Catalyst in Electro-Fenton Reaction

Atef El Jery, Moutaz Aldrdery, Ujwal Ramesh Shirode, Juan Carlos Orosco Gavilan, Abubakr Elkhaleefa, Mika Sillanpaa, Saad Sh. Sammen, Hussam H. Tizkam

Summary: The shortage of water resources has led to extensive research in the development of effective and affordable wastewater treatment methods. In this study, a modified catalyst was synthesized using wet impregnation and the hydrothermal technique. The catalyst showed excellent performance in a heterogeneous quasi-electro-Fenton reaction and remained stable under different operational conditions. The findings of this study clarify the potential of the heterogeneous zeolite catalyst in wastewater treatment.

CATALYSTS (2023)

Article Engineering, Environmental

Hybridized microfiltration-Fenton system for the treatment of greywater

Edris Rezaei, Behrouz Jafari, Mohsen Abbasi, Seyed Abdollatif Hashemifard, Shahriar Osfouri, Mahmoud Ramazani, Nadir Dizge, Mika Sillanpaa

Summary: The purpose of this study is to reuse greywater and prevent its release into the environment. The combined method of membrane and advanced oxidation was used to reduce the COD to the standard value. Ten types of membrane samples with different concentrations of kaolin, alumina, and calcium carbonate were prepared. The results showed that the addition of calcium carbonate increased the porosity and average pore size of the membrane.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2023)

Article Chemistry, Physical

Tandem CQDs loaded triple metal oxide interface-reinforced built-in electric field for a wide-spectral-responsive photocatalyst

Mohammad K. Okla, M. Kalil Rahiman, Mostafa A. Abdel-Maksoud, Ibrahim A. Alaraidh, Abdulrahman A. Alatar, Saud S. Al-amri, Hamada AbdElgawad, Mika Sillanpaa, S. Sudheer Khan

Summary: In this study, an n-p-n nanohybrid material was designed and synthesized, which consisted of ultrathin-Bi2WO6, CoFe2O4 nanosheets, spherical MnWO4, and carbon quantum dots. The experimental results demonstrated that the nanohybrid material exhibited excellent visible light absorption and efficient Cefixime photodegradation.

COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS (2023)

Review Chemistry, Applied

Molecular dynamics simulation techniques and their application to aroma compounds/cyclodextrin inclusion complexes: A review

Xingran Kou, Dongdong Su, Fei Pan, Xiwei Xu, Qingran Meng, Qinfei Ke

Summary: This review provides a systematic discussion of the application of molecular dynamics (MD) simulations in aroma compounds (ACs)/cyclodextrins (CDs) inclusion complexes (ICs). It covers the establishment of the simulation process, parameter selection, model evaluation, and various application cases, summarizing the major achievements and challenges of this method.

CARBOHYDRATE POLYMERS (2024)

Review Chemistry, Applied

Opportunities and challenges of fucoidan for tumors therapy

Haoyu Yu, Quanbin Zhang, Ammad Ahmad Farooqi, Jing Wang, Yang Yue, Lihua Geng, Ning Wu

Summary: Brown algae are rich in fucoidan, which has been found to have anti-cancer and anti-metastasis effects. Fucoidan inhibits tumor cell growth, proliferation, and metastasis, and also promotes immune responses in the tumor microenvironment.

CARBOHYDRATE POLYMERS (2024)

Review Chemistry, Applied

A review of chitosan in gene therapy: Developments and challenges

Liang Dong, Yanan Li, Hailin Cong, Bing Yu, Youqing Shen

Summary: Gene therapy is a revolutionary treatment that requires suitable vectors for protecting and releasing exogenous nucleic acids in target cells. Chitosan, as a non-viral vector, has gained attention due to its good biocompatibility and ability to load large amounts of nucleic acids. This paper summarizes the potential of chitosan and its derivatives as gene delivery vector materials, discusses factors influencing transfection efficiency, performance evaluation, ways to optimize infectious efficiency, and current research development directions. It also provides an outlook on the future prospects of chitosan.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

Vancomycin-loaded methylcellulose aerogel scaffolds for advanced bone tissue engineering

Ana Iglesias-Mejuto, Beatriz Magarinos, Tania Ferreira-Goncalves, Ricardo Starbird-Perez, Carmen Alvarez-Lorenzo, Catarina Pinto Reis, Ines Ardao, Carlos A. Garcia-Gonzalez

Summary: This study developed a novel processing strategy to manufacture drug-loaded and personalized aerogels with nanostructures. The aerogels demonstrated bioactivity and antimicrobial effects, promoting bone regeneration and preventing infections in bone tissue engineering.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

Micro assembly strategies for enhancing solid-state emission of cellulose nanocrystals and application in photoluminescent inks

Zhenxu Shi, Dimei Yang, Yan Zhou, Xinyu Chen, Lin Gan, Jin Huang

Summary: This study proposes a micro-assembly method to improve the photoluminescent properties of crystalline cellulose nanocrystals (CNCs) by organizing them within a sub-micrometer-sized metal-organic framework and coating with TiO2. The TiO2 coating prevents CNC assembly breakdown and allows information to be revealed using screenprinted labels for anti-counterfeiting purposes.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

High-throughput intact Glycopeptide quantification strategy with targeted-MS (HTiGQs-target) reveals site-specific IgG N-glycopeptides as biomarkers for hepatic disorder diagnosis and staging

Xuejiao Liu, Bin Fu, Jierong Chen, Zhenyu Sun, Dongdong Zheng, Zhonghua Li, Bing Gu, Ying Zhang, Haojie Lu

Summary: Liver disease is a major cause of global mortality, and identifying biomarkers for diagnosing its progression is crucial for improving outcomes. Targeted mass spectrometry is a powerful tool for verifying biomarker candidates and clinical applications, particularly for glycoproteins translation. However, the limitation of analyzing only one sample per run has become apparent. In this study, a high-throughput intact N-glycopeptides quantification strategy was developed, allowing the validation of 20 samples per run with an average analysis time of 3 minutes per sample. The strategy was applied in a cohort of 461 serum samples and identified a panel of 10 IgG N-glycopeptides that have strong clinical utility in evaluating the severity of liver disease.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

β-Glucan-conjugated anti-PD-L1 antibody enhances antitumor efficacy in preclinical mouse models

Qian Wang, Hao Jiang, Hongli Zhang, Weiqiao Lu, Xiao Wang, Wenfeng Xu, Jia Li, Youjing Lv, Guoyun Li, Chao Cai, Guangli Yu

Summary: This study proposes a novel strategy of antibody-beta-glucan conjugates (AGC) to enhance the antitumor immune response to immune checkpoint blockade (ICB) therapy. AGC demonstrated powerful tumor suppression and promoted interaction between tumor cells and dendritic cells (DCs), thereby enhancing immunotherapeutic benefits.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

Enhanced porous membrane fabrication using cellulose acetate and citric acid: Improved structural integrity, thermal stability, and gas permeability

Chaeyeon Lee, Sojeong Lee, Sang Wook Kang

Summary: The study aims to enhance the properties of porous membranes by addressing the limitations associated with phase separation. By using cellulose acetate and citric acid, the researchers were able to fabricate membranes with improved mechanical strength and thermal stability. The cross-linking effect of citric acid resulted in a more uniform pore structure and higher porosity.

CARBOHYDRATE POLYMERS (2024)

Review Chemistry, Applied

Stimuli-responsive polysaccharide-based smart hydrogels for diabetic wound healing: Design aspects, preparation methods and regulatory perspectives

Tejaswini Kolipaka, Giriraj Pandey, Noella Abraham, Dadi A. Srinivasarao, Rajeev Singh Raghuvanshi, P. S. Rajinikanth, Vidya Tickoo, Saurabh Srivastava

Summary: This review focuses on the design and application of polysaccharide-based hydrogel wound dressings, highlighting aspects such as biocompatibility, biodegradability, drug entrapment, moisturizing ability, swelling, and mechanical properties. Additionally, various crosslinking methods and recent developments in stimuli-responsive hydrogels are discussed.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

A highly stretchable, adhesive, and antibacterial hydrogel with chitosan and tobramycin as dynamic cross-linkers for treating the infected diabetic wound

Anqi Xu, Nan Zhang, Shixing Su, Hongyu Shi, Daoqiang Lu, Xifeng Li, Xin Zhang, Xin Feng, Zhuohua Wen, Gengwu Ma, Mengshi Huang, Chi Huang, Yuqi Hu, Hao Yuan, Qinwen Liu, Daogang Guan, Jun Wang, Chuanzhi Duan

Summary: The study presents a one-pot radical polymerization method to fabricate a hydrogel with adhesive properties, which can effectively treat bacterial-infected diabetic wounds and accelerate wound healing.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

Valorization of shrimp processing waste-derived chitosan into anti-inflammatory chitosan-oligosaccharides (CHOS)

Montarop Yamabhai, Munthipha Khamphio, Thae Thae Min, Chai Noy Soem, Nguyen Cao Cuong, Waheni Rizki Aprilia, Krisanai Luesukprasert, Karsidete Teeranitayatarn, Atthaphon Maneedaeng, Tina R. Tuveng, Silje B. Lorentzen, Simen Antonsen, Paiboon Jitprasertwong, Vincent G. H. Eijsink

Summary: The study investigates the bioconversion of chitosan into soluble anti-inflammatory chitosan oligosaccharides (CHOS) using an enzyme. The results show that the generated CHOS have anti-inflammatory activity, but the magnitude of the activity depends on the substrate and production process. Different methods of dissolving chitosan also affect the properties of CHOS. The study highlights the importance of quality assurance in CHOS preparations.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

Structural elucidation of an active polysaccharide from Radix Puerariae lobatae and its protection against acute alcoholic liver disease

Wen Cao, Jiangping Wu, Xinya Zhao, Zixu Li, Jie Yu, Taili Shao, Xuefeng Hou, Lutan Zhou, Chunfei Wang, Guodong Wang, Jun Han

Summary: In this study, a water-soluble polysaccharide (PLP1) was successfully isolated and purified from Pueraria lobata. It was found that PLP1 was composed of specific glycosidic units and exhibited a better free radical-scavenging ability. Moreover, PLP1 effectively protected the liver against acute alcoholic liver disease (ALD) in mice.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

Caffeic acid-grafted chitosan/sodium alginate/nanoclay-based multifunctional 3D-printed hybrid scaffolds for local drug release therapy after breast cancer surgery

Ya Su, Yaqian Liu, Xueyan Hu, Yueqi Lu, Jinyuan Zhang, Wenbo Jin, Wang Liu, Yan Shu, Yuen Yee Cheng, Wenfang Li, Yi Nie, Bo Pan, Kedong Song

Summary: A 3D printed scaffold based on carbon dots-curcumin nano-drug release has been developed for drug delivery after breast cancer surgery. The scaffold showed effective inhibition of tumor growth, antibacterial activity, and promotion of wound healing, making it a promising approach for preventing tumor recurrence.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

Enzymatically-derived oligo-carrageenans interact with α-Gal antibodies and Galectin-3

Ekaterina Sokolova, Diane Jouanneau, Antonin Chevenier, Murielle Jam, Nathalie Desban, Pierre Colas, Elizabeth Ficko-Blean, Gurvan Michel

Summary: Carrageenans, a compound synthesized in red algae, have various biological properties and are valuable in the pharmaceutical and cosmetic industries. Their fine structure affects wound healing, oxidative processes, hemostasis, and inflammation. Enzymatic modification of carrageenans produces oligosaccharides that bind to natural human serum antibodies and specific antibodies, showing potential for therapeutic applications.

CARBOHYDRATE POLYMERS (2024)

Article Chemistry, Applied

Immuno-modulation of tumor and tumor draining lymph nodes through enhanced immunogenic chemotherapy by nano-complexed hyaluronic acid/polyvinyl alcohol microneedle

Yan Shi, Miao Yu, Kaijin Qiu, Tiantian Kong, Chunjing Guo, Wenxue Zhang, Daquan Chen, Ming Kong

Summary: In this study, functionalized transfersomes were developed to co-deliver doxorubicin and 1MT towards primary tumors and tumor draining lymph nodes via transdermal administration using microneedles. The results showed that the nano-complexed microneedles exhibited a stronger suppression in tumor growth compared to the intravenous group.

CARBOHYDRATE POLYMERS (2024)