4.2 Article

Probiotic fermentation augments the skin anti-photoaging properties of Agastache rugosa through up-regulating antioxidant components in UV-B-irradiated HaCaT keratinocytes

期刊

出版社

BMC
DOI: 10.1186/s12906-018-2194-9

关键词

Agastache rugosa; Anti-photoaging; Glutathione; HaCaT; Matrix metalloproteinase (MMP); Probiotic fermentation; Reactive oxygen species (ROS); Superoxide dismutase

资金

  1. Korean Health Technology R&D Project, the Ministry of Health & Welfare, Republic of Korea [HN14C0081]

向作者/读者索取更多资源

Background: Agastache rugosa (Fisch. & C.A.Mey.) Kuntze (Korean mint) is used to treat diverse types of human disorders in traditional medicine. In recent years, its non-fermented leaf extract (ARE) has been shown to possess protective properties against ultraviolet-B (UV-B) radiation-induced photooxidative stress. The present work aimed to examine whether probiotic bacterial fermentation would potentiate the skin anti-photoaging activity of ARE or not, by comparing the protective properties of ARE and corresponding fermented extract (ARE-F) against UV-B radiation-induced photooxidative stress in HaCaT keratinocytes. Methods: ARE-F was produced from ARE by the fermentation with Lactobacillus rhamnosus HK-9, a type of Gram-positive probiotic bacterial strain. Anti-photoaging activities were evaluated by analyzing reactive oxygen species (ROS), promatrix metalloproteinases (proMMPs), total glutathione (GSH) and total superoxide dismutase (SOD) in UV-B-irradiated HaCaT keratinocytes. Antiradical activity was determined using 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assay. Results: ARE-F contained higher attenuating activity on the UV-B-induced ROS generation than ARE. Similarly, ARE-F was able to diminish the UV-B-induced proMMP-9 and -2 more effectively than ARE. ARE-F displayed higher tendencies to augment the UV-B-reduced total GSH content and SOD activity than ARE. However, there were no significant difference between ARE and ARE-F in ABTS radical scavenging activities. Conclusions: The findings suggest that the UV-B radiation-protective activity of ARE is enhanced by probiotic bacterial fermentation, which might improve the therapeutic and cosmetic values of A. rugosa leaves.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据