4.7 Article

Therapeutic effects of scoparone on pilocarpine (Pilo)-induced seizures in mice

期刊

BIOMEDICINE & PHARMACOTHERAPY
卷 97, 期 -, 页码 1501-1513

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2017.09.127

关键词

Epilepsy; Scoparone; Inflammation; Apoptosis; PI3K/AKT

向作者/读者索取更多资源

Epilepsy is a common and devastating neurological disorder. Inflammatory processes and apoptosis in brain tissue have been reported in human epilepsy. Scoparone (6,7-dimethoxycoumarin) is an important chemical substance, which has multiple beneficial activities, including antitumor, anti-inflammatory and anti-coagulant properties. In our present study, we attempted to investigate if scoparone could attenuate seizures-induced blood brain barrier breakdown, inflammation and apoptosis. Pilocarpine (Pilo) and methylscopolamine were used to establish acute seizure animal model. Scoparone suppressed the leakage of blood brain barrier, inflammation and apoptosis. In hippocampus and cortex, the expression of inflammation-associated molecules, such as chemokine (CXC motif) ligand 1 (CXCL-1), interleukin-1 beta (IL-1 beta), tumor necrosis factor-a (TNF-alpha), IL-6, hypoxiainducible factor 1a (HIF-1 alpha), and monocyte chemoattractant protein-1 (MCP-1), were reduced by scoparone through inactivating toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-kappa B) pathway. Scoparone reduced apoptotic levels in hippocampus by TUNEL analysis, along with decreased Caspase-3 and PARP cleavage. In addition, phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway in Pilo-induced acute seizures was also inactivated by scoparone. In vitro, we confirmed that scoparone inhibited LPS-caused astrocytes activation as proved by the reduced glial fibrillary acidic protein (GFAP) levels, inflammation and apoptosis, which were at least partly dependent on AKT suppression. The results above indicated that scoparone could relieve pilocarpine (Pilo)-induced seizures against neural cell inflammation and apoptosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Review Medicine, Research & Experimental

Flavonoids and ischemic stroke-induced neuroinflammation: Focus on the glial cells

Weizhuo Lu, Zhiwu Chen, Jiyue Wen

Summary: Ischemic stroke is a common and serious disease, and neuroinflammation plays a crucial role in its progression. Microglia, astrocytes, and infiltrating immune cells are involved in the complicated neuroinflammation cascade, releasing different molecules that affect inflammation. Flavonoids, plant-specific compounds, have shown protective effects against cerebral ischemia injury by modulating the inflammatory responses.

BIOMEDICINE & PHARMACOTHERAPY (2024)