4.7 Article Proceedings Paper

Light-dependent processes on the cathode enhance the electrical outputs of sediment microbial fuel cells

期刊

BIOELECTROCHEMISTRY
卷 122, 期 -, 页码 1-10

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.bioelechem.2018.02.009

关键词

Sediment microbial fuel cells; Light irradiation; Cathode; DNA analysis; Microbiota; Photosynthesis

资金

  1. National Science Fund of Bulgaria [DFNI E02-14/2014]

向作者/读者索取更多资源

In this study, we explored in details the influence of the light irradiation on the SMFCs electrical outputs. The experiments at both natural and artificial illumination firmly show that during the photoperiods the current grows up. The intensity of the current increase depends on the duration of the photoperiod as well as on the wavelength of the monochromatic light source applied. The highest influence of the light irradiation has been obtained at wavelengths, corresponding to the absorption peaks of essential pigments in the light -harvesting system of oxygenic photosynthesizing microorganisms. The decreased values as well as the discontinued fluctuations of the current as a result of suppressed illumination or substitution of the biocathode with a new one suggest that photosynthesizing microorganisms, co-existing in the cathodic biofilm consortium, contribute to the overall SMFC performance. The microscopic observations confirm the existence of chlorophyll-containing microorganisms on the cathode surface. Though the performed metagenomics DNA analysis has not certified a dominance of photosynthesizing microorganisms, all other results support the hypothesis that the current enhance during the photoperiods is due to the in situ bio-oxygen production on the cathode surface, thus lowering the mass transport limitations for the oxygen reduction reaction. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据