4.7 Article

Platelets Drive Thrombus Propagation in a Hematocrit and Glycoprotein VI-Dependent Manner in an In Vitro Venous Thrombosis Model

期刊

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/ATVBAHA.118.310731

关键词

blood platelets; erythrocytes; hematocrit; hemorheology; phosphatidylserines

资金

  1. National Science Foundation CAREER [CBET-1351672]
  2. American Heart Association [14GRNT20410094]
  3. National Institutes of Health [R01HL120728]

向作者/读者索取更多资源

Objective The objective of this study was to measure the role of platelets and red blood cells on thrombus propagation in an in vitro model of venous valvular stasis. Approach and Results A microfluidic model with dimensional similarity to human venous valves consists of a sinus distal to a sudden expansion, where for sufficiently high Reynolds numbers, 2 countercurrent vortices arise because of flow separation. The primary vortex is defined by the points of flow separation and reattachment. A secondary vortex forms in the deepest recess of the valve pocket characterized by low shear rates. An initial fibrin gel formed within the secondary vortex of a tissue factor-coated valve sinus. Platelets accumulated at the interface of the fibrin gel and the primary vortex. Red blood cells at physiological hematocrits were necessary to provide an adequate flux of platelets to support thrombus growth out of the valve sinus. A subpopulation of platelets that adhered to fibrin expose phosphatidylserine. Platelet-dependent thrombus growth was attenuated by inhibition of glycoprotein VI with a blocking Fab fragment or D-dimer. Conclusions A 3-step process regulated by hemodynamics was necessary for robust thrombus propagation: First, immobilized tissue factor initiates coagulation and fibrin deposition within a low flow niche defined by a secondary vortex in the pocket of a model venous valve. Second, a primary vortex delivers platelets to the fibrin interface in a red blood cell-dependent manner. Third, platelets adhere to fibrin, activate through glycoprotein VI, express phosphatidylserine, and subsequently promote thrombus growth beyond the valve sinus and into the bulk flow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据