4.4 Article

Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production

期刊

ARCHIVES OF MICROBIOLOGY
卷 200, 期 6, 页码 883-895

出版社

SPRINGER
DOI: 10.1007/s00203-018-1495-1

关键词

Arsenic resistance; Mine tailings; Endophytic bacteria; Resistance mechanism; As transformation; Arsenophore

资金

  1. Projects Secretaria de Investigacion y Posgrado del Instituto Politecnico Nacional (SIP-IPN) [20130722, 20130828]

向作者/读者索取更多资源

Arsenic contamination is an important environmental problem around the world since its high toxicity, and bacteria resist to this element serve as valuable resource for its bioremediation. Aiming at searching the arsenic-resistant bacteria and determining their resistant mechanism, a total of 27 strains isolated from roots of Prosopis laevigata and Spharealcea angustifolia grown in a heavy metal-contaminated region in Mexico were investigated. The minimum inhibitory concentration (MIC) and transformation abilities of arsenate (As5+) and arsenite (As3+), arsenophore synthesis, arsenate uptake, and cytoplasmatic arsenate reductase (arsC), and arsenite transporter (arsB) genes were studied for these strains. Based on these results and the 16S rDNA sequence analysis, these isolates were identified as arsenic-resistant endophytic bacteria (AREB) belonging to the genera Arthrobacter, Bacillus, Brevibacterium, Kocuria, Microbacterium, Micrococcus, Pseudomonas, and Staphylococcus. They could tolerate high concentrations of arsenic with MIC from 20 to > 100 mM for As5+ and 10-20 mM for As3+. Eleven isolates presented dual abilities of As5+ reduction and As3+ oxidation. As the most effective strains, Micrococcus luteus NE2E1 reduced 94% of the As5+ and Pseudomonas zhaodongensis NM2E7 oxidized 46% of As3+ under aerobic condition. About 70 and 44% of the test strains produced arsenophores to chelate As5+ and As3+, respectively. The AREB may absorb arsenate via the same receptor of phosphate uptake or via other way in some case. The cytoplasmic arsenate reductase and alternative arsenate reduction pathways exist in these AREB. Therefore, these AREB could be candidates for the bioremediation process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据