4.7 Article

Bioactive extracellular compounds produced by the dinoflagellate Alexandrium minutum are highly detrimental for oysters

期刊

AQUATIC TOXICOLOGY
卷 199, 期 -, 页码 188-198

出版社

ELSEVIER
DOI: 10.1016/j.aquatox.2018.03.034

关键词

Harmful algal bloom (HAB); Crassostrea gigas; Paralytic shellfish toxins (PST); Bioactive extracellular compounds (BEC); Histology; Behavior

资金

  1. National Research Agency ANR CESA (ACCUTOX project) [ANR-13-CESA-0019]

向作者/读者索取更多资源

Blooms of the dinoflagellate Alexandrium spp., known as producers of paralytic shellfish toxins (PSTs), are regularly detected on the French coastline. PSTs accumulate into harvested shellfish species, such as the Pacific oyster Crassostrea gigas, and can cause strong disorders to consumers at high doses. The impacts of Alexandrium minutum on C. gigas have often been attributed to its production of PSTs without testing separately the effects of the bioactive extracellular compounds (BECs) with allelopathic, hemolytic, cytotoxic or ichthyotoxic properties, which can also be produced by these algae. The BECs, still uncharacterized, are excreted within the environment thereby impacting not only phytoplankton, zooplankton but also marine invertebrates and fishes, without implicating any PST. The aim of this work was to compare the effects of three strains of A. minutum producing either only PSTs, only BECs, or both PSTs and BECs, on the oyster C. gigas. Behavioral and physiological responses of oysters exposed during 4 days were monitored and showed contrasted behavioral and physiological responses in oysters supposedly depending on produced bioactive substances. The non-PST extracellular-compound-producing strain primarily strongly modified valve-activity behavior of C. gigas and induced hemocyte mobilization within the gills, whereas the PST-producing strain caused inflammatory responses within the digestive gland and disrupted the daily biological rhythm of valve activity behavior. BECs may therefore have a significant harmful effect on the gills, which is one of the first organ in contact with the extracellular substances released in the water by A. minutum. Conversely, the PSTs impact the digestive gland, where they are released and mainly accumulated, after degradation of algal cells during digestion process of bivalves. This study provides a better understanding of the toxicity of A. minutum on oyster and highlights the significant role of BECs in this toxicity calling for further chemical characterization of these substances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据