4.7 Article

Thermodynamic performance of lunar surface nuclear power system with heat sink temperature change in a rotational period

期刊

APPLIED THERMAL ENGINEERING
卷 130, 期 -, 页码 127-134

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2017.11.038

关键词

Thermodynamic performance; Heat sink temperature; Rotational period; Thermal efficiency; Lightweight

资金

  1. Innovation Fund of Institute of Systems Engineering of China Academy of Engineering Physics [15cxj45]

向作者/读者索取更多资源

The thermodynamic performance of the lunar surface nuclear power system with Free-Piston Stirling Engines (FPSE) was analyzed based on the energy conservation of the system. The heat sink temperature was assumed to follow the sine function law. The cold side temperature of the FPSE was changing with time in a rotational period and would be increased with the increase of the heat sink temperature. The thermodynamic performance of the power system was changing with lower thermal efficiency and high amount of exhaust heat rejection, during the day time with heat sink temperature higher than 200 K. During the dark time, the power system could be kept as a steady state with higher thermal efficiency and less amount of exhaust heat rejection. The energy storage option could be required, if the electrical power output was expected to meet the grid. The highest thermal efficiency could be increased from 0.21 to 0.235, if the area of the heat rejection system was increased from 120 m(2) to 180 m(2), since the cold side temperature of the PFSE could be decreased. Larger area of the heat rejection system could increase the specific area but has the advantage of lightweight for the power system. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据