4.7 Article

An investigation of ensemble combination schemes for genetic programming based hyper-heuristic approaches to dynamic job shop scheduling

期刊

APPLIED SOFT COMPUTING
卷 63, 期 -, 页码 72-86

出版社

ELSEVIER
DOI: 10.1016/j.asoc.2017.11.020

关键词

Combinatorial optimisation; Job shop scheduling; Genetic programming; Hype-heuristic; Ensemble learning

向作者/读者索取更多资源

Genetic programming based hyper-heuristic (GP-HH) approaches that evolve ensembles of dispatching rules have been effectively applied to dynamic job shop scheduling (JSS) problems. Ensemble GP-HH approaches have been shown to be more robust than existing GP-HH approaches that evolve single dispatching rules for dynamic JSS problems. For ensemble learning in classification, the design of how the members of the ensembles interact with each other, e.g., through various combination schemes, is important for developing effective ensembles for specific problems. In this paper, we investigate and carry out systematic analysis for four popular combination schemes. They are majority voting, which has been applied to dynamic JSS, followed by linear combination, weighted majority voting and weighted linear combination, which have not been applied to dynamic JSS. In addition, we propose several measures for analysing the decision making process in the ensembles evolved by GP. The results show that linear combination is generally better for the dynamic JSS problem than the other combination schemes investigated. In addition, the different combination schemes result in significantly different interactions between the members of the ensembles. Finally, the analysis based on the measures shows that the behaviours of the evolved ensembles are significantly affected by the combination schemes. Weighted majority voting has bias towards single members of the ensembles. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据