4.5 Article

Dynamic microscopic 3D shape measurement based on marker-embedded Fourier transform profilometry

期刊

APPLIED OPTICS
卷 57, 期 4, 页码 772-780

出版社

OPTICAL SOC AMER
DOI: 10.1364/AO.57.000772

关键词

-

类别

资金

  1. Final Assembly 13th Five-Year Plan Advanced Research Project of China [30102070102]
  2. Six Talent Peaks project of Jiangsu Province, China [2015-DZXX-009]
  3. Fundamental Research Funds for the Central Universities [30916011322, 30917011204]
  4. National Key R&D Program of China [2017YFF0106403]
  5. National Natural Science Foundation of China (NSFC) [111574152, 61705105, 61722506]
  6. Outstanding Youth Foundation of Jiangsu Province of China [BK20170034]
  7. National Defense Science and Technology Foundation of China [0106173]
  8. 333 Engineering Research Project of Jiangsu Province, China [BRA2016407]
  9. Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense [3091601410414]
  10. China Postdoctoral Science Foundation [2017M621747]
  11. Jiangsu Planned Projects for Postdoctoral Research Funds [1701038A]

向作者/读者索取更多资源

In recent years, the fringe projection profilometry (FPP) technique has shown great prospects in the field of dynamic 3D measurement of microscopic surface shape. However, under dynamic conditions, it is desirable to use fewer projected patterns to minimize the sensitivity to motion. The commonly used phase-shifting method needs at least three fringe patterns to retrieve the wrapped phase, which depends heavily on the high-speed hardware to alleviate the effect of motion. Besides, to achieve an unambiguous measurement, at least two wrapped phase maps are required to obtain the absolute phase map, resulting in six pattern projections. In this paper, we propose the marker-embedded Fourier transform profilometry (MEFTP), which extends the modified Fourier transform profilometry with two embedded markers suited to assist the phase-unwrapping process. Combining the embedded markers with temporal phase difference information, the absolute phase can be reliably reconstructed with only two projected patterns. Furthermore, since the phase information is only encoded within a single high-frequency fringe, MEFTP is more suitable for measuring fast-moving or surface-changing objects compared with the phase-shifting method. Experiments on both static and dynamic scenes are performed, verifying that our method can achieve an accurate and robust measurement of a vibrating diaphragm at the speed of 200 frames per second. (C) 2018 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据