4.8 Article

Economic optimisation of European supply chains for CO2 capture, transport and sequestration, including societal risk analysis and risk mitigation measures

期刊

APPLIED ENERGY
卷 223, 期 -, 页码 401-415

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2018.04.043

关键词

Supply chain optimisation; Carbon capture and storage; Societal risk analysis; Risk mitigation measures; Hazardous CO2 transport

向作者/读者索取更多资源

European large stationary sources are currently emitting more than 1.4 Gt of CO2 every year. A significant decrease in greenhouse gases emissions cannot be achieved without carbon capture and sequestration (CCS) technologies. However, although being practiced for over 30 years, CO2 transportation is intrinsically characterised by the risk of leakage. This study proposes to assess and tackle this issue within the CCS design problem, by proposing a spatially explicit mixed integer linear programming approach for the economic optimisation of a European supply chain for carbon capture, transport and geological storage, where societal risk assessment is formally incorporated within the modelling framework. Post-combustion, oxy-fuel combustion and pre-combustion are considered as technological options for CO2 capture, whereas both pipelines (inshore and offshore) and ships are taken into account as transport means. Both inland-inshore and offshore injection options are available for carbon geological sequestration. Risk mitigation measures are considered in the design of the transport network. The overall supply chain is economically optimised for different minimum carbon reduction scenarios. Results demonstrate that accounting for societal risk may impact the overall carbon sequestration capacity, and that the proposed approach may represent a valuable tool to support policy makers in their strategic decisions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据