4.7 Article

Mitochondrial content is preserved throughout disease progression in the mdx mouse model of Duchenne muscular dystrophy, regardless of taurine supplementation

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
卷 314, 期 4, 页码 C483-C491

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00046.2017

关键词

animal model; DMD; mdx mouse; mitochondria; skeletal muscle; taurine

向作者/读者索取更多资源

Mitochondrial dysfunction is a pathological feature of Duchenne muscular dystrophy (DMD), a debilitating and fatal neuromuscular disorder characterized by progressive muscle wasting and weakness. Mitochondria are a source of cellular ATP involved in Ca2+ regulation and apoptolic signaling. Ameliorating aberrant mitochondrial function has therapeutic potential for reducing DMD disease severity. The dystrophic mdx mouse exhibits peak muscle damage at 21-28 days, which stabilizes after 8 wk. The amino acid taurine is implicated in mitochondrial health and function, with endogenous concentrations low when measured during the cycle of peak muscle damage in mdx mice. Using whole soleus and extensor digitorum longus (EDL) muscle homogenates from 28- and 70-day mdx mice, we found that there was no change in native state mitochondrial complexes using blue native-PAGE. NADH:ubiquinone oxidotreductase subunit-A9 (NDUFA9) protein abundance was lower in soleus muscle of 28- and 70-day mdx mice and HDL muscle of 70-day mdx mice compared with same muscles in WT (C57/BL10ScSn) animals. There were age-dependent increases in both NDUEA9 protein abundance and citrate synthase activity in soleus muscles of mdx and wild-type mice. There was no change in abundances of mitochondrial dynamics proteins mitofusin 2 (Mfn2) and mitochondrial dynamics protein 49 (MiD49). Taurine administration essentially did not affect any measurements of mitochondria. Collectively, these findings suggest mitochondrial content and dynamics are not reduced in the mdx mouse regardless of disease severity. We also elucidate that taurine affords no significant benefit to mitochondrial content or dynamics in the mdx mouse at either 28 or 70 days.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据