4.7 Article

Performance based discrete topology optimization of steel braced frames by a new metaheuristic

期刊

ADVANCES IN ENGINEERING SOFTWARE
卷 123, 期 -, 页码 77-92

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.advengsoft.2018.06.002

关键词

Discrete topology optimization; Performance-based design; Seismic load; Nonlinear behavior; Steel braced frame; Metaheuristic

向作者/读者索取更多资源

Seismic topology optimization of structures is a challenging field of structural engineering. So far, a little number of studies has been conducted on this regard and all of them have presented conceptual designs which are of limited practical applicability. The main aim of the present study is to find the practical optimal placement of X- and diagonal bracing systems in steel braced frames subject to seismic loading. To achieve this purpose, a discrete topology optimization formulation is proposed in the framework of seismic performance-based design. A new metaheuristic algorithm, center of mass optimization (CMO), is proposed to deal with the performance-based discrete topology optimization (PBDTO) problem based on the physical concept of center of mass for mass distribution in space. Two challenging benchmark structural optimization problems are presented in order to demonstrate the computational merit of the proposed CMO algorithm compared to a number of algorithms in literature. Furthermore, PBDTO process is implemented for four multi-story steel braced frames by CMO. Performance of the proposed CMO-based discrete topology optimization framework in finding practical topology of bracing members for SBFs is demonstrated on PBDTO examples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据