4.8 Article

Nanostructuring Multilayer Hyperbolic Metamaterials for Ultrafast and Bright Green InGaN Quantum Wells

期刊

ADVANCED MATERIALS
卷 30, 期 15, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201706411

关键词

light-emitting diodes; metamaterials; multilayers; plasmonics; Purcell effect

资金

  1. National Science Foundation - Division of Materials Research [1610538]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Materials Research [1610538] Funding Source: National Science Foundation

向作者/读者索取更多资源

Semiconductor quantum well (QW) light-emitting diodes (LEDs) have limited temporal modulation bandwidth of a few hundred MHz due to the long carrier recombination lifetime. Material doping and structure engineering typically leads to incremental change in the carrier recombination rate, whereas the plasmonic-based Purcell effect enables dramatic improvement for modulation frequency beyond the GHz limit. By stacking Ag-Si multilayers, the resulting hyperbolic metamaterials (HMMs) have shown tunability in the plasmonic density of states for enhancing light emission at various wavelengths. Here, nanopatterned Ag-Si multilayer HMMs are utilized for enhancing spontaneous carrier recombination rates in InGaN/GaN QWs. An enhancement of close to 160-fold is achieved in the spontaneous recombination rate across a broadband of working wavelengths accompanied by over tenfold enhancement in the QW peak emission intensity, thanks to the outcoupling of dominating HMM modes. The integration of nanopatterned HMMs with InGaN QWs will lead to ultrafast and bright QW LEDs with a 3 dB modulation bandwidth beyond 100 GHz for applications in high-speed optoelectronic devices, optical wireless communications, and light-fidelity networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据