4.8 Article

Self-Assembled pH-Sensitive Fluoromagnetic Nanotubes as Archetype System for Multimodal Imaging of Brain Cancer

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 28, 期 19, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201707582

关键词

blood brain barrier; cancer imaging; fluoromagnetic nanotubes; multifunctional probes; self-assembled nanomaterials

资金

  1. Universita degli Studi Milano-Bicocca [2016 ATESP0052]
  2. Associazione Centro Dino Ferrari
  3. Fondazione Roby ONLUS

向作者/读者索取更多资源

Fluoromagnetic systems are recognized as an emerging class of materials with great potential in the biomedical field. Here, it is shown how to fabricate fluoromagnetic nanotubes that can serve as multimodal probes for the imaging and targeting of brain cancer. An ionic self-assembly strategy is used to functionalize the surface of synthetic chrysotile nanotubes with pH-sensitive fluorescent chromophores and ferromagnetic nanoparticles. The acquired magnetic properties permit their use as contrast agent for magnetic resonance imaging, and enable the tracking of tumor cell migration and infiltration responsible for metastatic growth and disease recurrence. Their organic component, changing its fluorescence attitude as a function of local pH, targets the cancer distinctive acidity, and allows localizing and monitoring the tumor occurrence and progression by mapping the acidic spatial distribution within biopsy tissues. The fluoromagnetic properties of nanotubes are preserved from the in vitro to the in vivo condition and they show the ability to migrate across the blood brain barrier, thus spontaneously reaching the brain tumor after injection. The simplicity of the synthesis route of these geomimetic nanomaterials combined with their demonstrated affinity with the in vivo condition strongly highlights their potential for developing effective functional materials for multimodal theranostics of brain cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据