4.5 Article

Wave attenuation and negative refraction of elastic waves in a single-phase elastic metamaterial

期刊

ACTA MECHANICA
卷 229, 期 6, 页码 2561-2569

出版社

SPRINGER WIEN
DOI: 10.1007/s00707-018-2127-1

关键词

-

资金

  1. National Natural Science Foundation of China [11402101]

向作者/读者索取更多资源

In this paper, we propose and study a single-phase elastic metamaterial with periodic chiral local resonator, which is composed of cylindrical central core surrounded by evenly distributed ligaments and embedded in the matrix in a square lattice. Based on the analytical and numerical analysis, we prove that the translational resonance of the unit cell can lead to negative effective mass density, and the rotational resonance of it can produce negative effective modulus. They can also work together to generate double-negative effective material properties. The wave attenuation of elastic waves in this elastic metamaterial is also demonstrated, which is owing to the negative effective mass density. In addition, the damping of the base material is also considered in the simulation. We finally examine the existence of negative band, and this leads to the physics of negative refraction, which is induced by simultaneous translational and rotational resonance of the unit cell. Our work can serve as the theoretical foundation for the design of single-phase elastic metamaterials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据