4.7 Article

Size effects on intergranular crack growth mechanisms in ultrathin nanocrystalline gold free-standing films

期刊

ACTA MATERIALIA
卷 143, 期 -, 页码 77-87

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2017.10.004

关键词

Crack growth; In situ TEM; Nanocrystalline films

资金

  1. NSF through CAREER award [DMR-1255046]
  2. project NEXT of the Programme des Investissements d'Avenir [ANR-10-LABX-0037]
  3. project MIMETIS of the Programme des Investissements d'Avenir [ANR-10-EQPX-38-01]

向作者/读者索取更多资源

This study investigated the combined effects of thickness (30 vs 100 nm) and average grain size (40 vs 70 nm for the thicker films) on the crack propagation mechanisms in ultrathin nanocrystalline gold microbeams, using a microelectromechanical system device to perform in situ transmission electron microscope (TEM) tensile experiments. Monotonic tensile tests of the two types of microbeams show similar strength levels (similar to 400 MPa) and ductility (similar to 2%). However, the thicker specimens exhibit a much more ductile behavior under repeated stress relaxation experiments, which the in situ TEM experiments revealed to be related to differences in intergranular crack propagation mechanisms. The governing crack growth process is in both cases dominated by grain boundary dislocation activities leading to grain boundary sliding. For the thinner specimens, secondary nanocracks are generated (as a result of grain boundary sliding) ahead of the main crack and coalesce together. Instead, secondary nanocracks do not form ahead of the main crack for the thicker specimens; the main crack extends as a result of sustained grain boundary sliding at the crack tip. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据