4.7 Article

Anisotropic local hardening in hot-deformed Nd-Fe-B permanent magnets

期刊

ACTA MATERIALIA
卷 147, 期 -, 页码 176-183

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2017.12.059

关键词

permanent magnet; Nd-Fe-B; Hot-deformation; Grain boundary diffusion process (GBDP); Low melting eutectic

资金

  1. German federal state of Hessen through its excellence program LOEWE RESPONSE

向作者/读者索取更多资源

The diffusion of low-melting Nd-Cu alloys is very effective to increase coercivity H-c in hot-deformed Nd-Fe-B permanent magnets without the use of heavy rare earth and to study the local hardening mechanism, especially the role of the Nd-rich grain boundary on the magnetic decoupling of the Nd-Fe-B grains on the nanoscale. In this study, we found that for a Nd-Cu diffusion parallel to the texture axis the increase in H-c is higher than for a diffusion perpendicular to it and strongly depends on the diffusion depth whereas remanence develops in an inverse manner. We note the following three observations to explain This behavior results from: a) a higher overall Nd and Cu concentration for the parallel diffusion revealed by global energy dispersive X-ray (EDX) maps leading to a distinct change in the broadness of the interaction domains visualized by Kerr microscopy, b) a higher degree of misalignment of the Nd2Fe14B grains observed by electron backscattered diffraction (EBSD), and c) a more effective local hardening on the macroscopic scale governed by dipolar and exchange interactions as modeled by micromagnetic simulations. The misalignment and the incorporation of Nd and Cu also lead to a volume expansion of the magnet of around 0.6-0.8% as proven by in-situ thermo-optical measurements (TOM). (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据