4.8 Article

A PEGylated platelet free plasma hydrogel based composite scaffold enables stable vascularization and targeted cell delivery for volumetric muscle loss

期刊

ACTA BIOMATERIALIA
卷 65, 期 -, 页码 150-162

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2017.11.019

关键词

ECM scaffold; Stem cells; Plasma; Gel; Muscle

资金

  1. U.S Army Medical Research and Materiel Command of the Department of Defense
  2. U.S. Army Institute of Surgical Research
  3. Cooperative Research and Development Agreement (CRADA)
  4. ACell Inc., MD, USA

向作者/读者索取更多资源

Extracellular matrix (ECM) scaffolds are being used for the clinical repair of soft tissue injuries. Although improved functional outcomes have been reported, ECM scaffolds show limited tissue specific remodeling response with concomitant deposition of fibrotic tissue. One plausible explanation is the regression of blood vessels which may be limiting the diffusion of oxygen and nutrients across the scaffold. Herein we develop a composite scaffold as a vasculo-inductive platform by integrating PEGylated platelet free plasma (PFP) hydrogel with a muscle derived ECM scaffold (m-ECM). In vitro, adipose derived stem cells (ASCs) seeded onto the composite scaffold differentiated into two distinct morphologies, a tubular network in the hydrogel, and elongated structures along the m-ECM scaffold. The composite scaffold showed a high expression of ITGA5, ITGB1, and FN and a synergistic up-regulation of angl and tie-2 transcripts. The in vitro ability of the composite scaffold to provide extracellular milieu for cell adhesion and molecular cues to support vessel formation was investigated in a rodent volumetric muscle loss (VML) model. The composite scaffold delivered with ASCs supported robust and stable vascularization. Additionally, the composite scaffold supported increased localization of ASCs in the defect demonstrating its ability for localized cell delivery. Interestingly, ASCs were observed homing in the injured muscle and around the perivascular space possibly to stabilize the host vasculature. In conclusion, the composite scaffold delivered with ASCs presents a promising approach for scaffold vascularization. The versatile nature of the composite scaffold also makes it easily adaptable for the repair of soft tissue injuries. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据