4.8 Article

Synergistic Effect of Charge Generation and Separation in Epitaxially Grown BiOCl/Bi2S3 Nano-Heterostructure

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 17, 页码 15304-15313

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b03390

关键词

BioCl/Bi2S3; photoelectrochemical performance; heterojunction interface; charge generation; charge separation

资金

  1. Ministry of Science and Technology of China [2015DFG62610]
  2. PRChina - Israel program of the Israel Ministry of Science, Technology and Space

向作者/读者索取更多资源

Nano-heterostructures are widely used in the field of optoelectronic devices, and an optimal proportion usually exists between the constituents that make up the structures. Investigation on the mechanism underlying the optimal ratio is instructive for fabricating nano-heterostructures with high efficiency. In this work, BiOCl/Bi2S3 type-II nano-heterostructures with different Bi2S3/BiOCl ratios have been prepared via epitaxial growth of Bi2S3 nanorods on BiOCl nanosheets with solvothermal treatment at different sulfuration temperatures (110-180 degrees C) and their photoelectrochemical (PEC) performances as photoanodes have been studied. Results indicate that the Bi2S3 content increases with the sulfuration temperature. BiOCl/Bi2S3-170 (i.e., sulfurized@170 degrees C) exhibits the highest PEC performance under visible-light illumination, whereas BiOCl/Bi2S3-180 with the maximum Bi2S3 content shows the highest visible-light absorption, i.e., possessing the best potential for charge generation. Further analysis indicates that the BiOCl/Bi2S3 heterojunction interface is also crucial in determining the PEC performance of the obtained heterostructures by influencing the charge separation process. With increasing Bi2S3 content, the interface area in the BiOCl/Bi2S3 nano-heterostructures increases first and then decreases due to the mechanical fragility of the nanosheet-nanorod structure and the structural instability in the [010] direction of Bi2S3 with higher Bi2S3 content. Therefore, the increasing content of the Bi2S3 does not necessarily correspond to higher heterojunction area. The optimal performance of BiOCl/Bi2S3-170 results from the maximum of the synthetic coordination of the charge generation and separation. This is the first time ever to figure out the detailed explanation of the optimal property in the nano-heterostructures. The result is inspiring in designing high-performance nano-heterostructures from the point of synthesizing morphological mechanically robust heterostructure and structurally stable constituents to reach a high interfacial area, as well as high light-absorption ability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据