4.8 Article

Multiscale Engineered Si/SiOx Nanocomposite Electrodes for Lithium-Ion Batteries Using Layer-by-Layer Spray Deposition

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 18, 页码 15624-15633

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b00370

关键词

lithium-ion battery; Si/SiOx nanocomposite; electrode architecture; layer-by-layer; scalable spray deposition

资金

  1. U.K. Engineering and Physical Research Council [EP/M009521/1]
  2. National Research Foundation of Korea (NRF)-Korean government (MSIT) [NRF-2017R1A2B2012847]
  3. EPSRC [EP/L019469/1, EP/M009521/1, EP/R010145/1] Funding Source: UKRI

向作者/读者索取更多资源

Si-based high-capacity materials have gained much attention as an alternative to graphite in Li-ion battery anodes. Although Si additions to graphite anodes are now commercialized, the fraction of Si that can be usefully exploited is restricted due to its poor cyclability arising from the large volume changes during charge/discharge. Si/SiOx nanocomposites have also shown promising behavior, such as better capacity retention than Si alone because the amorphous SiOx helps to accommodate the volume changes of the Si. Here, we demonstrate a new electrode architecture for further advancing the performance of Si/SiOx nanocomposite anodes using a scalable layer-by-layer atomization spray deposition technique. We show that particulate C interlayers between the current collector and the Si/SiOx layer and between the separator and the Si/SiOx layer improved electrical contact and reduced irreversible pulverization of the Si/SiOx significantly. Overall, the multiscale approach based on microstructuring at the electrode level combined with nanoengineering at the material level improved the capacity, rate capability, and cycling stability compared to that of an anode comprising a random mixture of the same materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据